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Abstract
We study weighted α-fair packing problems, that is, the problems of maximizing the objective
functions (i)

∑
j wjx

1−α
j /(1−α) when α > 0, α 6= 1 and (ii)

∑
j wj ln xj when α = 1, over linear

constraints Ax ≤ b, x ≥ 0, where wj are positive weights and A and b are non-negative. We con-
sider the distributed computation model that was used for packing linear programs and network
utility maximization problems. Under this model, we provide a distributed algorithm for general
α that converges to an ε−approximate solution in time (number of distributed iterations) that
has an inverse polynomial dependence on the approximation parameter ε and poly-logarithmic
dependence on the problem size. This is the first distributed algorithm for weighted α-fair packing
with poly-logarithmic convergence in the input size. The algorithm uses simple local update rules
and is stateless (namely, it allows asynchronous updates, is self-stabilizing, and allows incremen-
tal and local adjustments). We also obtain a number of structural results that characterize α-fair
allocations as the value of α is varied. These results deepen our understanding of fairness guaran-
tees in α-fair packing allocations, and also provide insight into the behavior of α-fair allocations
in the asymptotic cases α→ 0, α→ 1, and α→∞.
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1 Introduction

Over the past two decades, fair resource allocation problems have received considerable
attention in many application areas, including Internet congestion control [32], rate control in
software defined networks [36], scheduling in wireless networks [45], multi-resource allocation
and scheduling in datacenters [12, 20, 24, 21], and a variety of applications in operations
research, economics, and game theory [11, 23]. In most of these applications, positive linear
(packing) constraints arise as a natural model of the allowable allocations.
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54:2 A Fast Distributed Stateless Algorithm for α-Fair Packing Problems

In this paper, we focus on the problem of finding an α-fair vector on the set determined
by packing constraints Ax ≤ 1, x ≥ 0 where all Aij ≥ 0.1 We refer to this problem as α-fair
packing. For a vector of positive weights w and α ≥ 0, an allocation vector x∗ of size n is
weighted α-fair , if it maximizes pα(x) =

∑
j wjfα(xj) [38], where:

fα(xj) =

ln(xj), if α = 1
x1−α
j

1−α , if α 6= 1
. (1)

α-fairness provides a trade-off between efficiency (sum of allocated resources) and fairness
(minimum allocated resource) as a function of α: the higher the α, the higher the fairness and
the lower the efficiency [4, 11, 31]. Important special cases are max-min fairness (α→∞) and
proportional fairness (α = 1). When α = 0, we have the “unfair” case of linear optimization.

Distributed algorithms for α-fair packing are of particular interest, as many applications
are inherently distributed (e.g., network congestion control), while others require paralleliza-
tion due to the large problem size (e.g., resource allocation in datacenters). We adopt the
model of distributed computation commonly used in packing linear programming (LP) algo-
rithms [7, 3, 8, 29, 33, 41] and which generalizes the model from network congestion control
[26]. In this model, an agent j controls the variable xj and has information about: (i) the
jth column of the m×n constraint matrix A, (ii) the weight wj , (iii) upper bounds on global
problem parameters m,n,wmax, and Amax, where wmax = maxj wj , and Amax = maxij Aij ,
and (iv) in each round, the relative slack of each constraint i in which xj takes part.

Distributed algorithms for α-fair resource allocations have been most widely studied in the
network congestion control literature, using a control-theoretic approach [25, 26, 45, 38, 32].
Such an approach yields continuous-time algorithms that converge after “finite” time; however,
the convergence time of these algorithms as a function of the input size is poorly understood.
Some other distributed pseudo-polynomial-time approximation algorithms that can address
α-fair packing are described in Table 1. These algorithms all have convergence times that
are at least linear in the parameters describing the problem.

No previous work has given truly fast (poly-log iterations) distributed algorithms for
the general case of α-fair packing. Only for the unfair α = 0 case (packing LPs), are such
algorithms known [7, 33, 8, 46, 29, 3].

Our Results. We provide the first efficient, distributed, and stateless algorithm for weighted
α-fair packing, namely, for the problem max{pα(x) : Ax ≤ 1, x ≥ 0}, where distributed
agents update the values of xj ’s asynchronously and react only to the current state of the
constraints. We assume that all non-zero entries Aij of matrix A satisfy Aij ≥ 1. Considering
such a normalized form of the problem is without loss of generality (see Appendix A in [35]).

The approximation provided by the algorithm, to which we refer as the ε-approximation,
is (i) (1 + ε)-multiplicative for α 6= 1, and (ii) Wε-additive2 for α = 1, where W =

∑
j wj .

The main results are summarized in the following theorem, where, to unify the statement of
the results, we treat α as a constant that is either equal to 1 or bounded away from 0 and 1,
and we also loosen the bound in terms of ε−1, n,m,Rw = maxj,k wj/wk, and Amax. For a
more detailed statement, see Theorems 4.1–4.3.

1 Although in the network congestion control literature A is commonly assumed to be a 0-1 matrix
[25, 26, 45, 38, 32], important applications (such as, e.g., multi-resource allocation in datacenters) are
modeled by a more general constraint matrix A with arbitrary non-negative elements [12, 20, 24, 21].

2 Note that W cannot be avoided here, as additive approximation is not invariant to the objective scaling.
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I Theorem 1.1 (Main Result). Given a weighted α-fair packing problem max{
∑
j wjfα(xj) :

Ax ≤ 1, x ≥ 0}, there exists a stateless and distributed algorithm (α-FairPSolver) that
computes an ε-approximate solution in O(ε−5 ln4(RwnmAmaxε

−1)) rounds.

To the best of our knowledge, for any constant approximation parameter ε, our algorithm
is the first distributed algorithm for weighted α-fair packing problems with a poly-logarithmic
convergence time.3 The algorithm is stateless according to the definition given by Awerbuch
and Khandekar [7, 6]: it starts from any initial state, the agents update the variables xj in a
cooperative but uncoordinated manner, reacting only to the current state of the constraints
that they observe, and without access to a global clock. Statelessness implies various desirable
properties of a distributed algorithm, such as: asynchronous updates, self-stabilization, and
incremental and local adjustments [7, 6].

We also obtain the following structural results that characterize α-fair packing allocations
as a function of the value of α:

We derive a lower bound on the minimum coordinate of the α-fair packing allocation
as a function of α and the problem parameters (Lemma 4.12). This bound deepens our
understanding of how the fairness (a minimum allocated value) changes with α.
We prove that for α ≤ ε/4

ln(nAmax/ε) , α-fair packing can be O(ε)−approximated by any
ε−approximation packing LP solver (Lemma 4.13).
We show that for |α−1| = O(ε2/ln2(ε−1RwmnAmax)), α-fair allocation is ε−approximated
by a 1−fair allocation returned by our algorithm (Lemmas 4.14 and 4.15).
We show that for α ≥ ln(RwnAmax)/ε, the α-fair packing allocation x∗ and the max-min
fair allocation z∗ are ε-close to each other: (1− ε)z∗ ≤ x∗ ≤ (1 + ε)z∗ element-wise. This
result is especially interesting as (i) max-min fair packing is not a convex problem, but
rather a multi-objective problem (see, e.g., [27, 43]) and (ii) the result yields the first
convex relaxation of max-min fair allocation problems with a 1± ε gap.

We now overview some of the main technical details of α-FairPSolver. In doing so, we
point out connections to the two main bodies of previous work, from packing LPs[7] and
network congestion control [25]. We also outline the new algorithmic ideas and proofs.

The algorithm and KKT conditions. The algorithm maintains primal and dual feasible
solutions and updates each primal variable xj whenever a Karush-Kuhn-Tucker (KKT)
condition xj

α
∑
i yiAij = wj is not approximately satisfied. In previous work, relevant

update rules include: [25] (for α = 1), where the update of each variable xj is proportional
to the difference wj − xj

∑
i yiAij , and [7] (for α = 0), where each xj is updated by a

multiplicative factor 1± β, whenever
∑
i yiAij = wj is not approximately satisfied. For our

techniques (addressing a general α) such rules do not suffice and we introduce the following
modifications: (i) in the α < 1 case we use multiplicative updates by factors (1 + β1) and
(1− β2), where β1 6= β2 and (ii) we use additional threshold values δj to make sure that xj ’s
do not become too small. These thresholds guarantee that we maintain a feasible solution,
but they significantly complicate (compared to the linear case) the argument that each step
makes a significant progress.

3 The total amount of work per (distributed) round is linear in the number of non-zero entries of the
constraint matrix A, which matches the best bound achieved in previous work on distributed packing
LPs [7, 33, 8, 46, 29, 3] and distributed network utility maximization [9, 39].

ICALP 2016
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Table 1 Comparison among distributed algorithms for α-fair packing.

Paper Number of Distributed Iterations4 Statelessness Notes
[15] Ω(ε−1nAmax) Semi-stateless5 Only for α = 1
[9] Ω(ε−1mnAmax

2) Not stateless
[39] poly(ε−1,m, n,Amax) Semi-stateless

[this work] O(ε−5ln4(RwmnAmax/ε)) Stateless

Dual Variables. In α-FairPSolver, a dual variable yi is an exponential function of the ith

constraint’s relative slack: yi(x) = C · eκ(
∑

j
Aijxj−1), where C and κ are functions of global

input parameters α,wmax, n,m, and Amax. Packing LP algorithms [7, 3, 42, 8, 18, 17, 28]
use similar dual variables with C = 1. Our work requires choosing C to be a function of
α,wmax, n,m,Amax rather than a constant.

Convergence Argument. The convergence analysis of α-FairPSolver relies on the appro-
priately chosen concave potential function that is bounded below and above for xj ∈ [δj , 1],
∀j, and that increases with every primal update. The algorithm can also be interpreted
as a gradient ascent on a regularized objective function (the potential function), using a
generalized entropy regularizer (see [3, 1]). A similar potential function was used in many
works on packing and covering linear programs, such as, e.g., in [7] and (implicitly) in
[46]. The Lyapunov function from [25] is also equivalent to this potential function when
yi(x) = C · eκ(

∑
j
Aijxj−1), ∀i. As in these works, the main idea in the analysis is to show

that whenever a solution x is not “close” to the optimal one, the potential function increases
substantially. However, our work requires several new ideas in the convergence proofs, the
most notable being stationary rounds. A stationary round is roughly a time when the
variables xj do not change much and are close to the optimum. Poly-logarithmic convergence
time is then obtained by showing that: (i) there is at most a poly-logarithmic number of
non-stationary rounds where the potential function increases additively and the increase is
“large enough”, and (ii) in all the remaining non-stationary rounds, the potential function
increases multiplicatively. Our use of stationary rounds is new, as is the use of Lagrangian
duality and all the arguments that follow (see [35] for a detailed discussion).

Relationship to Previous Work. Very little progress has been made in the design of
efficient distributed algorithms for the general class of α-fair objectives. Classical work
on distributed rate control algorithms in the networking literature uses a control-theoretic
approach to optimize α-fair objectives. While such an approach has been extensively studied
[25, 26, 45, 38, 32], it has never been proven to lead to a polynomial convergence time.

Since α-fair objectives are concave, their optimization over a region determined by linear
constraints is solvable in polynomial time in a centralized setting through convex programming
(see, e.g., [13, 40]). Distributed gradient methods for network utility maximization problems,
such as e.g., [9, 39] summarized in Table 1, can be applied to α-fair packing. However, the
convergence times of these algorithms depend on the dual gradient’s Lipschitz constant to
produce good approximations. While [9, 39] provide a better dependence on the accuracy ε
than our work, the dependence on the dual gradient’s Lipschitz constant, in general, leads to
at least linear convergence time as a function of n, m, and Amax.

As mentioned before, some special cases have been addressed, particularly max-min
fairness (α → ∞) and packing LPs (α = 0). Relevant work on max-min fairness includes
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[10, 22, 30, 27, 37, 34, 14], but none of these works have poly-logarithmic convergence time.
There is a long history of interesting work on packing LPs in both centralized and distributed
settings, e.g., [1, 42, 28, 18, 7, 33, 8, 46, 29, 3, 19]. Only a few of these works are stateless,
including the packing LP algorithm of Awerbuch and Khandekar [7], flow control algorithm
of Garg and Young [19], and the algorithm of Awerbuch, Azar, and Khandekar [5] for the
special case of load balancing in bipartite graphs. Additionally, the packing LP algorithm of
Allen-Zhu and Orecchia [3] is “semi-stateless”; the lacking property to make it stateless is
that it requires synchronous updates. The α = 1 case of α-fair packing problems is equivalent
to the problem of finding an equilibrium allocation in Eisenberg-Gale markets with Leontief
utilities [15]. Similar to the aforementioned algorithms, the algorithm from [15] converges in
time linear in ε−1 but also (at least) linear in the input size (see Table 1).

2 Preliminaries

Weighted α-Fair Packing. Consider the following optimization problem with positive
linear (packing) constraints: (Qα) = max{pα(x) ≡

∑n
j=1 wjfα(xj) : Ax ≤ b, x ≥ 0}, where

fα(xj) is given by (1), x = (x1, . . . , xn) is the vector of variables, A is an m× n matrix with
non-negative elements, and b = (b1, . . . , bm) is a vector with strictly positive6 elements. We
refer to (Qα) as the weighted α-fair packing. The following definition and lemma introduced
by Mo and Walrand [38] characterize weighted α-fair allocations. In the rest of the paper,
we will use the terms weighted α-fair and α-fair interchangeably.

I Definition 2.1 ([38]). Let w be a vector with positive entries and α > 0. A vector x is
weighted α-fair, if it is feasible and for any other feasible vector x:

∑n
j=1 wj

xj−x∗j
x∗
j
α ≤ 0.

I Lemma 2.2 ([38]). A vector x∗ solves (Qα) if and only if it is weighted α-fair.

Notice in (Qα) that since bi > 0, ∀i, and the partial derivative of the objective with
respect to any of the variables xj goes to ∞ as xj → 0, the optimal solution must lie in
the positive orthant. Moreover, since the objective is strictly concave and maximized over
a convex region, the optimal solution is unique and (Qα) satisfies strong duality (see, e.g.,
[13]). The same observations are true for the scaled version of the problem denoted by (Pα)
and introduced in the following subsection.

Normalized Form. We consider weighted α-fair packing in the normalized form:

(Pα) = max
{
pα(x) : Ax ≤ 1, x ≥ 0

}
,

where pα(x) =
∑n
j=1 wjfα(xj), fα is defined by (1), w = (w1, . . . , wn) is a vector of positive

weights, x = (x1, . . . , xn) is the vector of variables, A is an m× n matrix with non-negative
entries, and 1 is a size-m vector of 1’s. We let Amax denote the maximum element of the
constraint matrix A, and assume that every entry Aij of A is non-negative, and moreover,
that Aij ≥ 1 whenever Aij 6= 0. The maximum weight is denoted by wmax and the minimum
weight is denoted by wmin. The sum of the weights is denoted byW and the ratio wmax

wmin
by Rw.

We remark that considering (Qα) in the normalized form (Pα) is without loss of generality:
any problem (Qα) can be scaled to this form by (i) dividing both sides of each inequality
i by bi and (ii) working with scaled variables c · xj , where c = min{1, min{i,j:Aij 6=0}

Aij
bi
}.

Moreover, such scaling preserves the approximation (see [35]).

6 If, for some i, bi = 0, then trivially xj = 0, for all j such that Aij 6= 0.

ICALP 2016



54:6 A Fast Distributed Stateless Algorithm for α-Fair Packing Problems

Model of Distributed Computation. We adopt the same model of distributed computation
as [7, 3, 8, 29, 33, 41], described as follows. We assume that for each j ∈ {1, . . . , n}, there
is an agent controlling the variable xj . Agent j is assumed to have information about the
following problem parameters: (i) the jth column of A, (ii) the weight wj , and (iii) (an
upper bound on) m,n,wmax, and Amax. In each round, agent j collects the relative slack7
1−

∑n
j=1 Aijxj of all constraints i for which Aij 6= 0.

We remark that this model of distributed computation is a generalization of the model
considered in network congestion control problems [26] where a variable xj corresponds to the
rate of node j, A is a 0-1 routing matrix, such that Aij = 1 if and only if a node j sends flow
over link i, and b is the vector of link capacities. Under this model, the knowledge about the
relative slack of each constraint corresponds to each node collecting (a function of) congestion
on each link that it utilizes. Such a model was used in network utility maximization problems
with α-fair objectives [25] and general strongly-concave objectives [9].

KKT Conditions and Duality Gap. We will denote the Lagrange multipliers for (Pα) as
y = (y1, . . . , ym) and refer to them as “dual variables”. The KKT conditions for (Pα) are:

n∑
j=1

Aijxj ≤ 1, ∀i ∈ {1, . . . ,m}; xj ≥ 0, ∀j ∈ {1, . . . , n} (primal feasibility) (K1)

yi ≥ 0, ∀i ∈ {1, . . . ,m} (dual feasibility) (K2)

yi ·
( m∑
j=1

Aijxj − 1
)

= 0, ∀i ∈ {1, . . . ,m} (complementary slackness)

(K3)

xj
α
m∑
i=1

yiAij = wj , ∀j ∈ {1, . . . ,m} (gradient conditions) (K4)

The duality gap for α 6= 1 is (see Appendix B in [35]):

Gα(x, y) =
n∑
j=1

wj
xj

1−α

1− α
(
ξj

α−1
α − 1

)
+

m∑
i=1

yi −
n∑
j=1

wjx
1−α
j · ξj

α−1
α , (2)

where ξj = xj
α
∑m

i=1
yiAij

wj
, while for α = 1:

G1(x, y) = −
n∑
j=1

wj ln
(xj∑m

i=1yiAij
wj

)
+

m∑
i=1

yi −W. (3)

3 Algorithm

The pseudocode for the α-FairPSolver algorithm run at each node j is provided in Fig. 1.
The basic intuition is that the algorithm keeps KKT conditions (K1) and (K2) satisfied and
works towards (approximately) satisfying the remaining two KKT conditions (K3) and (K4)
to minimize the duality gap. The algorithm can run in the distributed setting described in
Section 2. In each round, an agent j updates the value of xj based on the relative slack of
all the constraints in which j takes part, as long as the KKT condition (K4) of agent j is
not approximately satisfied. The updates need not be synchronous: we will require that all
agents make updates at the same speed, but without access to a global clock.

7 The slack is “relative” because in a non-scaled version of the problem where one could have bi 6= 1,

agent j would need to have information about
bi−
∑n

j=1
Aijxj

bi
.
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α-FairPSolver(ε)
(Parameters δj , C, κ, γ, β1, and β2 are set as described in the text below the algorithm.)
In each round of the algorithm:

1: xj ← max{xj , δj}, xj = min{xj , 1}

2: Update the dual variables: yi = C · eκ
(∑n

j=1
Aijxj−1

)
∀i ∈ {1, . . . ,m}

3: if
xj
α·
∑m

i=1
yiAij

wj
≤ (1− γ) then

4: xj ← xj · (1 + β1)
5: else
6: if

xj
α·
∑m

i=1
yiAij

wj
≥ (1 + γ) then

7: xj ← max{xj · (1− β2), δj}

Figure 1 Pseudocode of α-FairPSolver algorithm.

To allow for self-stabilization and dynamic changes, the algorithm runs forever at all the
agents, which is a standard requirement for self-stabilizing algorithms (see, e.g., [16]). The
convergence of the algorithm is measured as the number of rounds between the round in
which the algorithm starts from some initial solution and the round in which it reaches an
ε−approximate solution, assuming that there are no hard reset events or node/constraint
insertions/deletions in between.

Without loss of generality, we assume that the input parameter ε that determines the
approximation quality satisfies ε ≤ min{ 1

6 ,
9

10α} for any α, and ε ≤ 1−α
α for α < 1. The

parameters δj , C, κ, γ, β1, and β2 are set as follows. For technical reasons (mainly due to
reinforcing dominant multiplicative updates of the variables xj), we set the values of the
lower thresholds δj below the actual lower bound of the optimal solution that we derive in
Lemma 4.12:

δj =
(

1
2 ·

wj
wmax

)1/α
·

{( 1
m·n2·Amax

)1/α
, if 0 < α ≤ 1

1
m·n2Amax2−1/α , if α > 1

.

We denote δmax ≡ maxj δj , δmin ≡ minj δj . The constant C that multiplies the exponent
in the dual variables yi is chosen as C = W∑n

j=1
δjα

. Because δj only depends on wj and on

global parameters, we also have C = wj
δjα

, ∀j. The parameter κ that appears in the exponent
of the yi’s is chosen as κ = 1

ε ln
(
CmAmax
εwmin

)
. The “absolute error” of (K4) γ is set to ε/4. For

α ≥ 1, we set β1 = β2 = β, where the choice of β is described below. For α < 1, we set
β1 = β, β2 = β2(ln( 1

δmin
))−1.

Similar to [7], we choose the value of β so that if we set β1 = β2 = β, in any round the
value of each xj

α
∑m

i=1
yi(x)Aij

wj
changes by a multiplicative factor of at most (1± γ/4). Since

the maximum increase over any xj in each iteration is by a factor 1 + β, and x is feasible in
each round (see Lemma 4.4), we have that

∑n
j=1 Aijxj ≤ 1, and therefore, the maximum

increase in each yi is by a factor of eκβ . A similar argument holds for the maximum decrease.
Hence, we choose β so that:

(1 + β)αeκβ ≤ 1 + γ/4 and (1− β)αe−κβ ≥ 1− γ/4,

and it suffices to set:

β =
{

γ
5(κ+1) , if α ≤ 1

γ
5(κ+α) , if α > 1

.

ICALP 2016
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I Remark. In the α < 1 cases, since β2 = β2(ln(1/δmin))−1, the maximum decrease in
xj
α
∑

i
yi(x)Aij
wj

is by a factor (1− (γ/4) · β(ln(1/δmin))−1), ∀j.

4 Convergence Analysis

In this section, we analyze the convergence time of α-FairPSolver. We first state our main
theorems and provide some general results that hold for all α > 0. We show that starting
from an arbitrary solution, the algorithm reaches a feasible solution within poly-logarithmic
(in the input size) number of rounds, and maintains a feasible solution forever after. Similar
to [7, 46, 25], we use a concave potential function that, for feasible x, is bounded below and
above and increases with any algorithm update. Then, we sketch the proof of Theorem 4.3
(α > 1), while we defer the full proofs of the three theorems to the full paper [35]. The
main proof idea in all the cases is as follows. With an appropriate definition of a stationary
round for each of the three cases α < 1, α = 1, and α > 1, we show that in every stationary
round, x approximates “well” the optimal solution by bounding the duality gap. On the
other hand, for any non-stationary round, we show that the potential increases substantially.
This large increase in the potential leads to the conclusion that there cannot be too many
non-stationary rounds, thus bounding the overall convergence time.

We make a few remarks here. First, we require that α be bounded away from zero. This
requirement is without loss of generality because we show that when α ≤ ε/4

ln(nAmax/ε) , any
ε−approximation LP provides a 3ε−approximate solution to (Pα) (Lemma 4.13). Thus,
when α ≤ ε/4

ln(nAmax/ε) we can switch to the algorithm of [7], and when α > ε/4
ln(nAmax/ε) , the

convergence time remains poly-logarithmic in the input size and polynomial in ε−1. Second,
the assumption that ε ≤ 1−α

α in the α < 1 case is also without loss of generality, because we
show that when α is close to 1 (roughly, 1−O(ε2/ ln2(RwmnAmax/ε))), we can approximate
(Pα) by switching to the α = 1 case of the algorithm (Lemma 4.14). Finally, when α > 1, the
algorithm achieves an ε−approximation in time O(α4ε−4 ln2(RwnmAmaxε

−1)). We believe
that a polynomial dependence on α is difficult to avoid in this setting, because by increasing
α, the gradient of the α-fair utilities fα blows up on the interval (0, 1): as α increases, fα(x)
quickly starts approaching a step function that is equal to −∞ on the interval (0, 1] and equal
to 0 on the interval (1,∞]. To characterize the behavior of α-fair allocations as α becomes
large, we show that when α ≥ ε−1ln(RwnAmax), all the coordinates of the α-fair vector are
within a 1 ± ε multiplicative factor of the corresponding coordinates of the max-min fair
vector (Lemma 4.17).

Main Results. Our main results are summarized in the following three theorems. The
objective is denoted by pα(x), xt denotes the solution at the beginning of round t, and x∗
denotes the optimal solution.

I Theorem 4.1 (Convergence for α < 1). α-FairPSolver solves (Pα) approximately for
α < 1 in time that is polynomial in ln(nmAmax)

αε . In particular, after at most

O
(
α−2ε−5 ln2 (RwmnAmax) ln2 (ε−1RwmnAmax

))
(4)

rounds, there exists at least one round t such that pα(x∗)− pα(xt) ≤ εpα(xt). Moreover, the
total number of rounds s in which pα(x∗)− pα(xs) > εpα(xs) is also bounded by (4).

I Theorem 4.2 (Convergence for α = 1). α-FairPSolver solves (P1) approximately in time
that is polynomial in ε−1 ln(RwnmAmax). In particular, after at most

O
(
ε−5 ln2 (RwnmAmax) ln2 (ε−1RwnmAmax

))
(5)
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rounds, there exists at least one round t such that p(x∗)− p(xt) ≤ εW . Moreover, the total
number of rounds s in which p(x∗)− p(xs) > εW is also bounded by (5).

I Theorem 4.3 (Convergence for α > 1). α-FairPSolver solves (Pα) approximately for
α > 1 in time that is polynomial in ε−1 ln(nmAmax). In particular, after at most:

O
(
α4ε−4 ln (RwnmAmax) ln

(
ε−1RwnmAmax

))
(6)

rounds, there exists at least one round t such that pα(x∗)− pα(xt) ≤ ε(−pα(xt)). Moreover,
the total number of rounds s in which pα(x∗)− pα(xs) > ε(−pα(xs)) is also bounded by (6).

Proofs of Theorem 4.1 and Theorem 4.2 are provided in the full paper [35]. We sketch
the proof of Theorem 4.3 in Section 4.1.

Feasibility and Approximate Complementary Slackness. The following three lemmas are
preliminaries for the convergence time analysis. Lemma 4.4 shows that starting from a
feasible solution, the algorithm always maintains a feasible solution. Lemma 4.5 shows that
any violated constraint becomes feasible within poly-logarithmic number of rounds, and
remains feasible forever after. Combined with Lemma 4.4, Lemma 4.5 allows us to focus
only on the rounds with feasible solutions x. Lemma 4.6 shows that after a poly-logarithmic
number of rounds, approximate complementary slackness (KKT condition (K3)) holds in an
aggregate sense:

∑m
i=1 yi(x)

(∑n
j=1 Aijxj − 1

)
≈ 0. Proofs are provided in [35].

I Lemma 4.4. If the algorithm starts from a feasible solution, then the algorithm maintains
a feasible solution x: xj ≥ 0, ∀j and

∑n
j=1 Aijxj ≤ 1, ∀i, in each round.

I Lemma 4.5. If for any i:
∑n
j=1 Aijxj > 1, then after at most τ1 = O( 1

β2
ln(nAmax))

rounds, it is always true that
∑n
j=1 Aijxj ≤ 1.

I Lemma 4.6. If the algorithm starts from a feasible solution, then after at most τ0 =
1
β ln

(
1

δmin

)
rounds, it is always true that:

1. At least one constraint is approximately tight: maxi
{∑n

j=1 Aijxj
}
≥ 1− (1 + 1/κ)ε,

2.
∑m
i=1 yi ≤ (1 + 3ε)

∑n
j=1 xj

∑m
i=1 yiAij, and

3. (1− 3ε)
∑m
i=1 yi ≤

∑n
j=1 xj

∑m
i=1 yiAij ≤

∑m
i=1 yi.

Lemmas analogous to 4.4 and 4.6 also appear in [7]. However, the proofs of Lemmas 4.4
and 4.6 require new ideas compared to the proofs of the corresponding lemmas in [7]. We
need to be much more careful in our choice of lower thresholds δj and constant C in the
dual variables, particularly by choosing C as a function of several variables, rather than as a
constant. The choice of δj ’s is also sensitive as smaller δj ’s would make the potential function
range too large, while larger δj ’s would cause more frequent decrease of “small” variables. In
either case, the convergence time would increase.

Decrease of Small Variables. The following lemma is also needed for the convergence
analysis. It shows that if some variable xj decreases by less than a multiplicative factor
(1−β2), i.e., xj < δj

1−β2
and xj decreases, then xj must be part of at least one approximately

tight constraint. This lemma will be used later to show that in any round the increase in
the potential due to the decrease of “small” variables is dominated by the decrease of “large”
variables (i.e., the variables that decrease by a multiplicative factor (1− β2)). The proof of
Lemma 4.7 is provided in [35].
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I Lemma 4.7. Consider the rounds that happen after the initial τ1 = O( 1
β2

ln(nAmax))
rounds. If in some round there is a variable xj < δj

1−β2
that decreases, then in the same

round for some i with Aij 6= 0 it holds that: yi(x) ≥
∑m

l=1
Aljyl(x)

mAmax
and

∑n
k=1 Aikxk > 1− ε

2 .

Potential. We use the following potential function to analyze the convergence time:

Φ(x) = pα(x)− 1
κ

m∑
i=1

yi(x),

where pα(x) =
∑n
j=1 wjfα(xj) and fα is defined by (1). The potential function is strictly

concave and its partial derivative with respect to any variable xj is:

∂Φ(x)
∂xj

= wj
xjα
−

m∑
i=1

yi(x)Aij = wj
xjα

(
1−

xj
α
∑m
i=1 yi(x)Aij
wj

)
. (7)

The following fact (given in a similar form in [7]), which follows directly from the Taylor
series representation of concave functions, will be useful for the potential increase analysis:

I Fact 4.8. For a differentiable concave function f : Rn → R and any two points x0, x1 ∈ Rn:
n∑
j=1

∂f(x0)
∂xj

(x1
j − x0

j ) ≥ f(x1)− f(x0) ≥
n∑
j=1

∂f(x1)
∂xj

(x1
j − x0

j ).

Using Fact 4.8 and (7), we show the following lemma:

I Lemma 4.9. Starting with a feasible solution and throughout the course of the algorithm,
the potential function Φ(x) never decreases. Letting x0 and x1 denote the values of x before
and after a round update, respectively, the potential function increase is lower-bounded as:

Φ(x1)− Φ(x0) ≥
n∑
j=1

wj

∣∣x1
j − x0

j

∣∣
(x1
j )α

∣∣∣1− (x1
j )α
∑m
i=1 yi(x1)Aij
wj

∣∣∣.
4.1 Proof Sketch of Theorem 4.3
In this section, we outline the main ideas of the proof of Theorem 4.3, while the technical
details are omitted and are instead provided in [35]. First, we show that in any round of
the algorithm the variables that decrease by a multiplicative factor (1− β2) dominate the
potential increase due to all the variables that decrease (see Lemma 4.21 in [35]). This result
is then used in Lemma 4.10 to show the following lower bound on the potential increase:

I Lemma 4.10. Let x0 and x1 denote the values of x before and after any fixed round,
respectively, and let S+ = {j : x1

j > x0
j}, S− = {j : x1

j < x0
j}. The potential increase in the

round is lower bounded as:
1. Φ(x1)− Φ(x0) ≥ Ω(βγ)

∑
j∈{S+∪S−} x

0
j

∑m
i=1 yi(x0)Aij;

2. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1−β)α

)(∑n
j=1 x

0
j

∑m
i=1 yi(x0)− (1 + γ)

∑n
j=1 wj(x0

j )1−α
)
;

3. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1+β)α

)(
(1− γ)

∑n
j=1 wj(x0

j )1−α −
∑n
j=1 x

0
j

∑m
i=1 yi(x0)

)
.

Observe that for α > 1 the objective function pα(x), and, consequently, the potential
function Φ(x), is negative for any feasible x. To yield a poly-logarithmic convergence time in
Rw,m, n, and Amax, the idea is to show that the negative potential −Φ(x) decreases by some
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multiplicative factor whenever x is not a “good” approximation to x∗ – the optimal solution
to (Pα). This idea, combined with the fact that the potential never decreases (and therefore
−Φ(x) never increases) and with upper and lower bounds on the potential then leads to the
desired convergence time. Consider the following definition of a stationary round:

I Definition 4.11 (Stationary round). A round is stationary, if both:
1.
∑
j∈{S+∪S−} x

0
j

∑m
i=1 yi(x)Aij < γ

∑n
j=1 wj(x0

j )
1−α, and

2. (1− 2γ)
∑n
j=1 wj(x0

j )
1−α ≤

∑n
j=1 x

0
j

∑m
i=1 yi(x0)Aij ,

where S+ = {j : x1
j > x0

j}, S− = {j : x1
j < x0

j}. Otherwise, the round is non-stationary.

Recall the expression for the negative potential: −Φ(x) = 1
α−1

∑
j wjxj

1−α + 1
κ

∑
i yi(x).

Then, using Lemma 4.10, it suffices to show that in a non-stationary round the decrease
in the negative potential −Φ(x) is a multiplicative factor of the larger of the two terms

1
α−1

∑
j wjxj

1−α and 1
κ

∑
i yi(x). The last part of the proof shows that the solution x that

corresponds to any stationary round is close to the optimal solution. This part is done by
appropriately upper-bounding the duality gap. Denoting by S+ ∪ S− the set of coordinates
j for which xj either increases or decreases in the observed stationary round and using
Definition 4.11, we show that the terms j ∈ {S+ ∪ S−} contribute to the duality gap by
no more than O(εα) · (−pα(x)). The terms corresponding to j /∈ {S+ ∪ S−} are bounded
recalling (from α-FairPSolver) that for such terms xαj

∑m

i=1
yi(x)Aij

wj
∈ (1− γ, 1 + γ).

4.2 Structural Properties
Lower Bound on the Minimum Allocated Value. Recall (from Section 2) that the optimal
solution x∗ to (Pα) must lie in the positive orthant. We show in Lemma 4.12 that not only
does x∗ lie in the positive orthant, but the minimum element of x∗ can be bounded below as
a function of the problem parameters. This lemma motivates the choice of parameters δj in
α-FairPSolver (Section 3). The proof is provided in [35].

I Lemma 4.12. Let x∗ = (x∗1, . . . , x∗n) be the optimal solution to (Pα). Then ∀j ∈ {1, . . . , n}:
x∗j ≥

( wj
wmaxM

mini:Aij 6=0
1

niAij

)1/α, if 0 < α ≤ 1,

x∗j ≥ Amax
(1−α)/α( wj

wmaxM

)1/α mini:Aij 6=0
1

niAij
, if α > 1,

where ni =
∑n
j=1 1{Aij 6=0}

8 is the number of non-zero elements in the ith row of the constraint
matrix A, and M = min{m,n}.

Asymptotics of α-Fair Allocations. The following lemma states that for sufficiently small
(but not too small) α, the values of the linear and the α-fair objectives at their respective
optimal solutions are approximately the same. This statement will then lead to a conclusion
that to ε−approximately solve an α-fair packing problem for a very small α, one can always
use an ε−approximation packing LP algorithm.

I Lemma 4.13. Let (Pα) be an α-fair packing problem with optimal solution x∗, and (P0)
be the LP with the same constraints and the same weights w as (Pα) and an optimal solution
z∗. Then if α ≤ ε/4

ln(nAmax/ε) , we have that
∑
j wjz

∗
j ≥ (1− 3ε)

∑
j

(x∗j )1−α

1−α , where ε ∈ (0, 1/6].

8 With the abuse of notation, 1{e} is the indicator function of the expression e, i.e., 1 if e holds, and 0
otherwise.

ICALP 2016



54:12 A Fast Distributed Stateless Algorithm for α-Fair Packing Problems

Observing that for any α ∈ (0, 1), (z∗j )1−α

1−α ≥ z∗j (since, due to the scaling, z∗j ∈ [0, 1]), a simple
corollary of Lemma 4.13 is that an ε−approximation z to (P0) (

∑
j wjzj ≥ (1− ε)

∑
j wjz

∗
j )

is also an O(ε)−approximation to (Pα), for α ≤ ε/4
ln(nAmax/ε) . Thus, to find an ε−approximate

solution for α ≤ ε/4
ln(nAmax/ε) , the packing LP algorithm of [7] can be run, which means that

there is a stateless distributed algorithm that converges in poly(ln(ε−1RwmnAmax)/ε) time
for α arbitrarily close to zero.

The following two lemmas show that when α is sufficiently close to 1, (Pα) can be
ε−approximated by ε−approximately solving (P1) with the same constraints and weights.

I Lemma 4.14. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned
by α-FairPSolver. Then, for any α ∈ [1− 1/τ0, 1), where τ0 = 1

β ln( 1
δmin

), x is also a
2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the
value of α in the objective.

I Lemma 4.15. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned
by α-FairPSolver. Then, for any α ∈ (1, 1 + 1/τ0], where τ0 = 1

β ln( 1
δmin

), x is also a
2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the
value of α in the objective.

Finally, we consider the asymptotics of α-fair allocations, as α becomes large. This result
complements the result from [38] that states that α-fair allocations approach the max-min
fair one as α→∞ by showing how fast the max-min fair allocation is reached as a function
of α,Rw, n, and Amax. First, for completeness, we provide the definition of max-min fairness.

I Definition 4.16. (Max-min fairness [10].) Let R ⊂ Rn+ be a compact and convex set.
A vector x ∈ R is max-min fair on R if for any vector z ∈ R it holds that: if for some
j ∈ {1, . . . , n} zj > xj , then there exists k ∈ {1, . . . , n} such that zk < xk and xk ≤ xj .

On a compact and convex set R ⊂ Rn, the max-min fair vector is unique [44, 43]. The
following lemma shows that for α ≥ ε−1 ln(RwnAmax), the α-fair vector and the max-min
fair vector are ε−close to each other. Notice that because of a very large gradient of pα(x)
as α becomes large, the max-min fair solution gives only an O(εα)−approximation to (Pα).

I Lemma 4.17. Let x∗ be the optimal solution to (Pα) = max{pα(x) : Ax ≤ 1, x ≥ 0}, z∗
be the max-min fair solution for the convex and compact set determined by the constraints
from (Pα). Then if α ≥ ε−1 ln (RwnAmax), we have that:
1. pα(x∗) ≤ (1− ε(α− 1))pα(z∗), i.e., z∗ is an ε(α− 1)−approximate solution to (Pα), and
2. (1− ε)z∗j ≤ x∗j ≤ (1 + ε)z∗j , for all j ∈ {1, . . . , n}.

5 Conclusion

We presented an efficient stateless distributed algorithm for the class of α-fair packing
problems. To the best of our knowledge, this is the first algorithm with poly-logarithmic
convergence time in the input size. Additionally, we obtained results that characterize the
fairness and asymptotic behavior of allocations in weighted α-fair packing problems that
may be of independent interest. An interesting open problem is to determine the class of
objective functions for which the presented techniques yield fast and stateless distributed
algorithms, together with a unified convergence analysis. This problem is especially important
in light of the fact that α-fair objectives are not Lipschitz continuous, do not have a Lipschitz
gradient, and their dual gradient’s Lipschitz constant scales at least linearly with n and Amax.



J. Marašević, C. Stein, and G. Zussman 54:13

Therefore, the properties typically used in fast first-order methods are lacking [40, 2]. Finally,
for applications of α-fair packing that do not require stateless updates, it seems plausible
that the dependence on ε−1 in the convergence bound can be improved from ε−5 to ε−3 by
relaxing the requirement for asynchronous updates, similarly as was done in [3] over [7].
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