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Abstract This paper considers max-min fair rate allocation and routing in energy
harvesting networkswhere fairness is required amongboth the nodes and the time slots.
Unlike most previous work on fairness, we focus onmultihop topologies and consider
different routing methods. We assume a predictable energy profile and focus on the
design of efficient and optimal algorithms that can serve as benchmarks for distributed
and approximate algorithms. We first develop an algorithm that obtains a max-min
fair rate assignment for any routing that is specified at the input. We then turn to the
problem of determining a “good” routing. For time-invariable unsplittable routing,
we develop an algorithm that finds routes that maximize the minimum rate assigned
to any node in any slot. For fractional routing, we derive a combinatorial algorithm
for the time-invariable case with constant rates. We show that the time-variable case
is at least as hard as the 2-commodity feasible flow problem and design an FPTAS to
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combat the high running time. Finally, we show that finding an unsplittable routing or
a routing tree that provides lexicographically maximum rate assignment (i.e., the best
in the max-min fairness terms) is NP-hard, even for a time horizon of a single slot.
Our analysis provides insights into the problem structure and can be applied to other
related fairness problems.

Keywords Energy harvesting · Energy adaptive networking · Network flows ·
Sensor networks · Routing · Fairness

1 Introduction

Recent advances in the development of ultra-low-power transceivers and energy har-
vesting devices (e.g., solar cells) will enable self-sustainable and perpetual wireless
networks [11,14,15]. In contrast to legacy wireless sensor networks, where the avail-
able energy only decreases as the nodes sense and forward data, in energy harvesting
networks the available energy can also increase through a replenishment process. This
added energy replenishment results in significantly more complex variations of the
available energy, which poses challenges in the design of resource allocation and
routing algorithms.

The problems of resource allocation, scheduling, and routing in energy harvesting
networks have received considerable attention [2,4,9,12,13,16–18,23,24,29,32,34].
Most existing work considers simple networks consisting of a single node or a link
[2,4,13,16,29,34]. Moreover, fair rate assignment has not been thoroughly studied,
and most of the work either focuses on maximizing the total (or average) throughput
[2,4,9,12,18,23,27,29,32,34], or considers fairness either only over nodes [24] or
only over time [13,16]. An exception is [17], which requires fairness over both the
nodes and the time, but is limited to two nodes.

In this paper, we study the max-min fair rate assignment and routing problems for
general network topologies, requiring fairness over both nodes and time slots, and
with the goal of designing optimal and efficient algorithms.

Following [9,13,16,17,23,24], we assume that the harvested energy is known for
each node over a finite time horizon T . Such a setting corresponds to a highly-
predictable energy profile, and can also be used as a benchmark for evaluating
algorithms designed for unpredictable energy profiles. We consider an energy har-
vesting sensor network with a single sink node, and network connectivity modeled by
a directed graph (Fig. 1). Each node senses some data from its surrounding (e.g., air
pressure, temperature, radiation level), and sends it to the sink. The nodes spend their
energy on sensing, sending, and receiving data.

1.1 Fairness Motivation

Two natural conditions that a network should satisfy are:

(i) balanced data acquisition across the entire network, and
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Fig. 1 A simple energy harvesting network: the nodes sense the environment and forward the data to a
sink s. Each node has a battery of capacity B. At time t node i’s battery level is bi,t , it harvests ei,t units
of energy, and senses at data rate λi,t

Fig. 2 An example of a network inwhich throughputmaximization can result in a very unfair rate allocation
among the nodes

(ii) persistent operation (i.e., even when the environmental energy is not available for
harvesting).

Condition (i) is commonly maintained by requiring fairness of the sensing rates
over the nodes in each time slot. We note that in the considered network model,
due to different energy costs for sending, sensing, and receiving data, throughput
maximization can be inherently unfair even in the case of single-slot time horizon.
For example, consider a simple network with two energy harvesting nodes x and y
and a sink s as illustrated in Fig. 2. Assume that x has one unit of energy available,
and y has two units of energy. Let cst denote the joint cost of sensing and sending a
unit flow, and let crt denote the joint cost for receiving and sending a unit flow. Let λx

and λy denote the sensing rates assigned to the nodes x and y, respectively. Suppose
that the objective is to maximize λx + λy . If cst = 1, crt = 2, then in the optimal
solution λx = 1 and λy = 0. Conversely, if cst = 2, crt = 1, then in the optimal
solution λx = 0 and λy = 1. This example easily extends to more general degenerate
cases in which maximum-throughput solution assigns non-zero sensing rates only to
one part of the network, whereas the remaining nodes do not send any data to the
sink.

One approach to achieving (ii) is by assigning constant sensing rates to the nodes.
However, this approach can result in underutilization of the available energy. As
a simple example, consider a node that harvests outdoor light energy over a 24-
h time horizon. If the battery capacity is small, then the sensing rate must be
low to prevent battery depletion during the nighttime. However, during the day-
time, when the harvesting rates are high, a low sensing rate prevents full utilization
of the energy that can be harvested. Therefore, it is advantageous to vary the
sensing rates over time. However, fairness must be required over time slots to pre-
vent the rate assignment algorithm from assigning high rates during periods of
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Fig. 3 Routing types: a a routing tree, b unsplittable routing: each node sends its data over one path, c
fractional routing: nodes can send their data over multiple paths. Paths are represented by dashed lines

high energy availability, and zero rates when no energy is available for harvest-
ing.

To guarantee (i) and (ii), we seek a lexicographically maximum rate assign-
ment � = {λi,t }, where i ∈ {1, . . . , n} indexes nodes, while t ∈ {1, . . . , T }
indexes time slots. Informally, a rate assignment � = {λi,t } is lexicographically
maximum if it is feasible, and for any alternative rate assignment �′ = {λ′

i,t },
by traversing the elements of � and �′ in non-decreasing order either all the ele-
ments from � and �′ are equal, or in the first pair of non-equal elements the
greater element is from �. Such a lexicographically maximum rate assignment
is equivalent to the most egalitarian rate assignment—namely, the max-min fair
rate assignment—whenever a max-min fair rate assignment exists. Formal defini-
tions of max-min fairness and lexicographical ordering of vectors are provided in
Sect. 2.1.

1.2 Routing Types

We consider three different routing types that can be used in any fixed time slot: (i)
a routing tree, (ii) unsplittable (single-path) routing, and (iii) fractional (multi-path
routing), illustrated in Fig. 3. During one time slot, the routing and the assigned rates
are fixed.

A routing tree is the simplest routing: every node i (except for the sink) has a single
parent node to which it sends all the flow that i either generates through sensing or
receives from other nodes. Unsplittable (or single-path) routing is a generalization of
the routing tree, where every node has a single path to the sink over which it sends
all the flow it generates. Finally, fractional (or multi-path) routing is the most general
form of routing in which every node can split the generated flow over arbitrarily many
paths to the sink.

The routing tree is a special case of the unsplittable routing, and the unsplittable
routing is a special case of the fractional routing. Therefore, it is clear that (under
any reasonable comparison criteria) on any input graph out of the three routing types
the routing trees support the “lowest” rates, while the fractional routings support
the “highest” rates. We illustrate the effect of the routing type on the minimum rate
assigned in a max-min fair rate assignment in Figs. 4 and 5.

We will refer to a routing as time-invariable, if in every time slot each node i uses
the same set of paths to send its flow to the sink, and, moreover, for each path used
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Fig. 4 A network example in which unsplittable routing provides minimum sensing rate that is�(n) times
higher than for any routing tree. Assume cst = crt = 1 and T = 1. Available energy levels at all the nodes
xi , i ∈ {1, . . . , k} are equal to 1, as shown in the box next to the nodes. Other nodes have energy levels
that are high enough so that they are not constraining. In any routing tree, y has some xi as its parent, so
λxi = λy = λz1 = · · · = λzk−1 = 1/(k + 1) and λx j = 1 for j �= i . In an unsplittable routing with paths
pxi = {xi , s}, pzi = {zi , y, xi , s}, and py = {y, xk , s}, all the rates are equal to 1/2. As k = �(n), the
minimum rate improves by �((k + 1)/2) = �(n)

Fig. 5 Anetwork example inwhich a fractional routing providesminimumsensing rate that is 2
1+1/(n−1) ≈

2 times higher than in any unsplittable routing. Assume cst = crt = 1 and T = 1. Available energy levels at
all the nodes are equal to 1, as shown in the box next to the nodes. In any unsplittable routing, y sends all its
flow through one xi , so λxi = λy = 1

2 and λx j = 1 for j �= i . In a fractional routing, y can split its flow over

all xi ’s, so that
λy
n−1 + λxi = bxi , for all i . To maximize minimum assigned rate, λy = λxi = 1

1+1/(n−1) .

Therefore, the minimum assigned rate improves by a factor of 2
1+1/(n−1)

by i the fraction of flow sent by i does not change over time slots.1 Otherwise, the
routing is time-variable. For example, we will say that a routing is a time-variable
routing tree, if the most complex routing used in any time slot is a routing tree. As any
time-invariable routing is a special case of the corresponding time-variable routing,
the time-variable routings in general provide higher rates. We illustrate the effect of
the time variance of a routing on the minimum rate assigned to any node in a max-min
fair rate assignment in Fig. 6.

It is natural to ask why should any simpler routing type be preferred over time-
variable fractional routing—the most general one. The answer lies in the practical
implementation of a routing: in general, more complex routing types are more difficult
tomaintain and requiremore control information that consumes energy thus effectively
lowering the achievable sensing rates [15].

1 Note that node i’s sensing rate (generated flow) can change over time, even though the routing does not
change.
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Fig. 6 A network example in which a time-variable routing solution provides minimum sensing rate that
is �(n) times higher than in any time-invariable routing. The batteries of x1 and x2 are initially empty,
and the battery capacity at all the nodes is B = 1. Harvested energy values over time slots for nodes x1
and x2 are shown in the box next to them. Other nodes are assumed not to be energy constraining. In any
time-invariable routing, at least one of x1, x2 has �(k) = �(n) descendants, forcing its rate to the value
of 1/�(n) in the slots in which the harvested energy value is equal to 1. In a routing in which y sends the
data only through x1 in odd slots and only through x2 in even slots: λy = λz1 = · · · = λzk−1 = 1

Table 1 Our results for determining a max-min fair routing

Routing Computational complexity

Routing tree NP-hard to approximate within O(log(n)) even for T = 1

Unsplittable routing NP-hard to determine even for T = 1

Time-variable fractional
routing

Can be determined with an
˜O(nT (T 2ε−2 · (nT + MCF(n,m) + LP(mT, nT )))-time
algorithm, where MCF(n,m) is the running time of an algorithm
that solves the min-cost flow problem on a graph with n nodes and
m edges and LP(mT, nT ) is the running time of an algorithm
that solves a linear program with mT variables and nT constraints

Time-invariable fractional
routing with time-invariable
rates

Can be determined with an ˜O(n(T + MF(n,m)))-time algorithm,
where MF(n,m) is the running time of an algorithm that solves
the maximum flow problem on a graph with n nodes and m edges

1.3 Our Contributions

For a routing that is provided at the input, we design a combinatorial algorithm that
solves the max-min fair rate assignment problem. The algorithm runs in ˜O(nmT 2)

time,2 where n is the number of energy-harvesting nodes, m is the number of edges
in the routing graph, and T is the time horizon.

We then turn to the problem of finding a “good” routing of the specified type, where
a routing is “good” if it provides a lexicographically maximum rate assignment out
of all feasible routings of the same type. We sometimes refer to such a routing as the
max-min fair routing 3 (see Sect. 2.2 for a formal statement of the problems). Our
results for determining a max-min fair routing of a specified type are summarized in
Table 1.

We show that a max-min fair routing tree is NP-hard to approximate within
�(log(n)) and that a max-min fair unsplittable routing is NP-hard to find, regard-

2
˜O(.)-notation hides poly-log terms.

3 The notions of max-min fairness and lexicographical ordering of vectors are defined in Sect. 2.1.
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less of whether the routing is time variable or not. Relaxing the requirement of the
lexicographically maximum rates, we design a polynomial algorithm that determines
a time-invariable unsplittable routing that maximizes the minimum rate assigned
to any node in any time slot.

For the max-min fair time-variable fractional routing, we demonstrate that veri-
fying whether a given rate assignment is feasible is at least as hard as solving a feasible
2-commodity flow. This result implies that, to our current knowledge, it is unlikely that
we can determine a max-min fair fractional routing without the use of linear program-
ming (LP). To combat the high running time induced by the LP, we develop a fully
polynomial time approximation scheme (FPTAS). We also show that in the special
case when the fractional routing is restricted to be time-invariable with rates that are
constant over time, the max-min fair routing can be determined in polynomial time
with a combinatorial algorithm that we provide in Sect. 5.

Our algorithms rely on the well-known water-filling framework, described in Sect.
2.1. It is important to note that water-filling is a framework—not an algorithm—and
therefore it does not specify how to solve the maximization nor fixing of the rates steps
(see Sect. 2.1). Even though a general LP framework for implementing water-filling
such as e.g., [8,24,31] can be adapted to solve some of the problems studied in this
paper, their implementation in general requires solving O(N 2) LPs for any problem
with N variables. For instance, to determine a max-min fair time-variable fractional
routing this water filling framework would in general need to solve O(n2T 2) LPs
with O(mT ) variables and O(nT ) constraints, thus resulting in an unacceptably high
running time. Our algorithms are devised relying on the problem structure, and in
most cases do not use LP. The only exception is the algorithm for determining a max-
min fair time-variable fractional routing (Sect. 4), which solves O(nT ) LPs, and thus
provides at least O(nT )-fold improvement as compared to an adaptation of [8,24,31].

The problems considered generalize classical max-min fair routing problems that
have been studied outside the area of energy harvesting networks, such as:max-min fair
fractional routing [28], max-min fair unsplittable routing [21], and bottleneck routing
[3]. In contrast to the problems studied in [3,21,28], our model allows different costs
for flow generation and forwarding, and has time-variable node capacities determined
by the available energies at the nodes. We remark that studying networks with node
capacities is as general as studying networks with capacitated edges, as there are
standard methods for transforming one of these two problems into the other (see, e.g.,
[1]). Therefore, we believe that the results will find applications in other related areas.

1.4 Related Work

We briefly survey the related work on classical fairness problems and problems arising
in sensor and energy-harvesting networking applications.
Energy-harvesting Networks Rate assignment in energy harvesting networks in the
case of a single node or a link was studied in [2,4,9,13,16,29,34]. Resource allo-
cation and scheduling for network-wide scenarios using the Lyapunov optimization
technique was studied in [12,18,27,32]. While the work in [12,18,27,32] can sup-
port unpredictable energy profiles, it focuses on the (sum-utility of) time-average rates,
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which is, in general, time-unfair. Online algorithms for resource allocation and routing
were considered in [10,23].

Max-min time-fair rate assignment for a single node or a link was considered in
[13,16], while max-min fair energy allocation for single-hop and two-hop scenarios
was studied in [17]. Similar to our work, [17] requires fairness over both the nodes and
the time slots, but considers only two energy harvesting nodes. The work on max-min
fairness in network-wide scenarios [24] is explained in more detail below.
Sensor NetworksA special case of max-min fair rate assignment and routing in energy
harvesting networks is related to the problems of lifetime maximization in sensor
networks (see, e.g., [6,26] and the follow-up work). In particular, the problem of
maximizing only the minimum rate assigned to any node (instead of finding amax-min
fair rate assignment) over a time horizon of a single slot is equivalent to maximizing
the lifetime of a sensor network.

Determining a maximum lifetime tree in sensor networks as in [5] is a special
case of determining a max-min fair tree routing in energy harvesting networks. We
extend the NP-hardness result from [5] and provide a lower bound of �(log n) for
the approximation ratio (for both [5] and our version of the problem), where n is the
number of nodes in the network.
Max-min Fair Rate Assignment Max-min fair rate assignment for a given routing was
studied extensively (see [3,7] and references therein). Max-min fair rate assignment
in energy harvesting networks reduces to the problems from [3,7] for cst = crt (unit
energy costs) and T = 1 (static capacities). In the energy harvesting network setting,
the problem of rate assignment has been considered in [24], for rates that are constant
over time and a time-invariable routing tree. We consider a more general case than in
[24], where the rates are time-variable, fairness is required over both network nodes
and time slots, and the routing can be time-variable and of any type (a routing tree, an
unsplittable routing, or a fractional routing).
Max-min Fair Unsplittable Routing Determining a max-min fair unsplittable routing
as studied in [21] is a special case of determining a max-min fair unsplittable routing
in energy harvesting networks for cst = crt and T = 1. The NP-hardness results from
[21] implies the NP-hardness of determining a max-min fair unsplittable routing in
energy harvesting networks.
Max-min Fair Fractional RoutingMax-min fair fractional routing was first studied in
[28]. The algorithm from [28] relies on the property that the total values of a max-min
fair flow and max flow are equal, which does not hold even in simple instances of
energy harvesting networks. The problem of determining a max-min fair fractional
routing reduces to the problem of [28] for T = 1 and cst = crt.

Max-min fair fractional routing in energy harvesting networks has been consid-
ered in [24]. The distributed algorithm from [24] is a heuristic for the problem of
determining a time-invariable fractional routing with constant rates. We provide a
combinatorial algorithm that solves this problem optimally in a centralized manner
(Sect. 5). We focus on the more general problem of determining a max-min fair time-
variable routing with time-variable rates, and we provide an FPTAS for this problem
in Sect. 4.
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A general linear programming framework for max-min fair routing was provided in
[31], and extended to the setting of sensor and energy harvesting networks in [8] and
[24], respectively. This framework, when applied to our setting, is highly inefficient.

1.5 Organization of the Paper

The rest of the paper is organized as follows. Section 2 provides background on
max-min fairness and lexicographic maximization, and introduces the model and the
considered problems. Section 3 considers rate assignment in a given routing, while
Sects. 4 and 5 study determining amax-min fair fractional routing in time-variable and
time-invariable settings, respectively. Section 6 provides hardness results for determin-
ing unsplittable routing or a routing tree. Section 7 provides conclusions and outlines
possible future directions.

2 Preliminaries

2.1 Max-min Fairness and Lexicographic Maximization

A vector v is max-min fair if it is feasible and no element vi of v can be increased
without either violating feasibility or decreasing some other element v j ≤ vi . A more
formal definition of max-min fairness is (see, e.g., [3]):

Definition 1 An allocation vector v = (v1, . . . , vl) is max-min fair if it is feasible,
and for any other feasible vector u = (u1, . . . , ul): if ui > vi for some i ∈ {1, . . . , l},
then there exists j ∈ {1, . . . , l} such that v j < vi and v j > u j .

Closely related to the max-min fairness is the notion of lexicographic maximization.

The lexicographic ordering of vectors, with the relational operators denoted by
lex= ,

lex
> , and

lex
< , is defined as follows:

Definition 2 Let u and v be two vectors of the same length l, and let us and vs
denote the vectors obtained from u and v respectively by sorting their elements in the
non-decreasing order. Then:

(i) u
lex= v if us = vs element-wise;

(ii) u
lex
> v if there exists j ∈ {1, 2, . . . , l}, such that us( j) > vs( j), and us(1) =

vs(1), . . . , us( j − 1) = vs( j − 1) if j > 1;

(iii) u
lex
< v if neither u

lex= v nor u
lex
> v.

A max-min fair allocation vector exists on any convex and compact set [31]. In a
given optimization problem whenever a max-min fair vector exists, it is unique and
equal to the lexicographically maximum one [33]. We summarize these two results in
the following lemma:

Lemma 1 For any convex and compact feasible region, a max-min fair allocation
vector exists and it is unique. Moreover, the max-min fair vector is equivalent to the
lexicographically maximum vector from the same feasible region.
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Lexicographic maximization of a vector v over a feasible region R can be imple-
mented using the water-filling framework (see, e.g., [3]):

Algorithm 1 Water-filling-Framework(R)
1: Set vi = 0 ∀i , and mark all the elements of v as not fixed.
2: Maximizing-the-Rates: Increase all the elements vi of v that are not fixed by the same maximum

amount, subject to the constraints fromR.
3: Fixing-the-Rates: Fix all the vi ’s that cannot be further increased.
4: If all the elements of v are fixed, terminate. Otherwise, go to Step 2.

As we will see later, the problems of finding the max-min fair rate assignment in a
given routing and determining max-min fair fractional routing will have convex and
compact feasible regions. Since in this case max-min fair rate allocation is equivalent
to the lexicographically maximum one (Lemma 1), our algorithms will rely on the
Water-filling-Framework. The algorithmic challenges for these problems will lie
in the efficient implementation of common rate maximization (Step 2) and rate fixing
(Step 3).

For problems that do not have a convex feasible region, a max-min fair allocation
does not necessarily exist, while a lexicographicallymaximumallocation always exists
(see, e.g., [31]). Therefore, the problems of finding an “optimal” routing tree or an
unsplittable routing may not have a solution in the max-min fair sense, but will always
have at least one solution in the context of lexicographicmaximization. For this reason,
we will consider lexicographic maximization in such cases.

2.2 Model and Problem Formulation

We consider a network that consists of n energy harvesting nodes and one sink node
(Fig. 1). The sink node is assumed not to be energy constrained. In the rest of the paper,
we will use “sink” to refer to the sink node and “node” to refer to an energy harvesting
node. The connectivity between the nodes is modeled by a directed graphG = (V, E),
where |V | = n + 1 (n nodes and the sink), and |E | = m. We assume without loss of
generality that every node has a directed path to the sink, because otherwise it can be
removed from the graph. The main notation is summarized in Table 2.

Each node is equipped with a rechargeable battery of finite capacity B. The time
horizon is T time slots. The duration of a time slot is assumed to be much longer
than the duration of a single data packet, but short enough so that the rate of energy
harvesting does not change during a slot. For example, if outdoor light energy is
harvested, one time slot can be at the order of a minute. In a time slot t , a node i
harvests ei,t units of energy. The battery level of a node i at the beginning of a time
slot t is bi,t . We follow a predictable energy profile [9,13,16,17,23,24], and assume
that all the values of harvested energy ei,t , i ∈ {1, . . . , n}, t ∈ {1, . . . , T }, battery
capacity B, and all the initial battery levels bi,1, i ∈ {1, . . . , n} are known and finite.

A node i in slot t senses data (generates flow) at rate λi,t . A node forwards all the
data it senses and receives towards the sink. The flow on a link (i, j) in slot t is denoted
by fi j,t . Each node spends cs energy units to generate a unit flow, and ctx, respectively
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Table 2 Nomenclature

Inputs

n Number of energy harvesting nodes

m Number of edges

T Time horizon

i Node index, i ∈ {1, 2, . . . n}
t Time index, t ∈ {1, . . . , T }
B Battery capacity

ei,t Harvested energy at node i in time slot t

cs Energy spent for sensing a unit flow

ctx Energy spent for transmitting a unit flow

crx Energy spent for receiving a unit flow

Variables

λi,t Sensing rate of node i in time slot t

fi j,t Flow on link (i, j) in time slot t

bi,t Battery level at node i at the beginning of time slot t

Notation

cst Energy spent for jointly sensing and transmitting a unit flow: cst = cs + ctx

crt Energy spent for jointly receiving and transmitting a unit flow: crt = crx + ctx

f �
i,t Total flow entering node i in time slot t : f �

i,t = ∑

j :( j,i)∈E f ji,t

crx, energy units to send, respectively receive, a unit flow. The joint cost of generating
and sending a unit flow is denoted by cst ≡ cs + ctx, while the joint cost of receiving
and sending a unit flow is denoted by crt ≡ crx + ctx.

Consider any routing R = {Rt }, where Rt ⊆ E is a subset of edges from the
underlying graph G used to route data in time slot t . The feasible region of the sensing
rates λi,t and the flows fi j,t with respect to a given routing R is determined by the
following set of linear4 constraints:

∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
∑

( j,i)∈Rt

f j i,t + λi,t =
∑

(i, j)∈Rt

fi j,t (1)

bi,t+1 = min
{

B, bi,t + ei,t −
(

cstλi,t + crt
∑

( j,i)∈Rt

f j i,t
)}

(2)

bi,t+1 ≥ 0, λi,t ≥ 0, fi j,t ≥ 0,∀(i, j) ∈ Rt , (3)

where (1) is a classical flow conservation constraint, while (2) describes the battery
evolution over time slots.

4 Note that we treat Eq. (2) as a linear constraint, since the considered problems focus on maximizing λi,t ’s
(under the max-min fairness criterion), and (2) can be replaced by bi,t+1 ≤ B and bi,t+1 ≤ bi,t + ei,t −
(crt f �

i,t + cstλi,t ) while leading to the same solution.
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For Definitions 1 and 2 to apply, we will interpret a rate assignment � = {λi,t } as
a one-dimensional vector.

2.3 Considered Problems

We examine different routing types, in time-variable and time-invariable settings, as
described in the Introduction. The problems that we consider are from either of the
following two categories: (i) determining a max-min fair rate assignment in a routing
that is provided at the input, and (ii) determining a routing of the required type that
provides lexicographically maximum rate assignment. We specify the problems in
more detail below. The first problem formalizes (i), while the remaining problems are
specific instances of (ii).

P-Determine-Rates: Given a routing R = {Ri,t }, determine the max-min fair
assignment of the rates {λi,t }. Note that this setting subsumes all the routing types that
were defined in the Introduction.

P-Unsplittable-Routing: For a given (time-invariable or time-variable) unsplit-
table routing P , let {λPi,t } denote a rate allocation that optimally solves P-Determine-
Rates over P . Searching over all feasible unsplittable routings in graph G over time
horizon T , determine an unsplittable routingP that provides a lexicographically max-
imum assignment of rates {λPi,t }.

P-Routing-Tree: Let T denote a (time-invariable or time-variable) routing tree
on the input graph G. For each T , let {λTi,t } denote a rate allocation that optimally
solves P-Determine-Rates. Searching over all feasible routing trees in G over time
horizon T , determine T that provides a lexicographically maximum assignment of
rates {λTi,t }.

P-Fractional-Routing: Determine a time-variable fractional routing that sup-
ports lexicographically maximum rate assignment {λi,t }, considering all the (time-
variable, fractional) routings.

P-Fixed-Fractional-Routing: Determine a time-invariable fractional routing
that provides the max-min fair time-invariable rate assignment {λi,t } = {λi }. This
problem is a special case of P-Fractional-Routing, where the routing and the rates
are constant over time.

3 Rate Allocation in a Specified Routing

This section provides an algorithm for P-Determine-Rates, the problem of rate
assignment for a routing specified at the input. The analysis applies to any routing
type described in the Introduction. As discussed in Sect. 2.1, to design an efficient rate
assignment algorithm relyingonWater-filling-Framework,weneed to implement
the common rate maximization (Step 2) and fixing of the rates (Step 3) of Water-
filling-Framework efficiently.

We begin by introducing additional notation. We assume that the routing over time
t ∈ {1, . . . , T } is provided as a time-sequence of sets of routing paths P = {Pi,t }
from a node i to the sink s, for each node i ∈ V \{s}. We also assume that associated
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with each path pi,t ∈ Pi,t there is a coefficient αi,t > 0, such that
∑

pi,t∈Pi,t
αi,t = 1.

The coefficients αi,t determine the fraction of flow λi,t that is sent over path pi,t . We
say that node j is a descendant of node i in a time slot t if i ∈ P j,t , that is, if i is on
at least one routing path of j in slot t .5

We let Fk
i,t = 1 if the rate λi,t is not fixed at the beginning of the kth iteration of

Water-filling-Framework, Fk
i,t = 0 otherwise. Initially, F1

i,t = 1, ∀i, t . If a rate
λi,t is not fixed, we will say that it is “active”. To concisely evaluate the flow incoming
into node i in time slot t in iteration k, we let Dk

i,t = ∑

{p j,t : j �=i∧i,p j,t∈P j,t } α j,t · Fk
j,t .

Finally, let λki,t and b
k
i,t denote the values of λi,t and bi,t in the kth iteration of Water-

filling-Framework, where λ0i,t = 0, ∀i, t . Under this notation, the rates in kth

iteration can be expressed as λki,t = ∑k
l=1 F

l
i,tλ

l , where λl denotes the common
amount by which all the active rates get increased in the lth iteration. Moreover, it is
not hard to see that the total flow incoming into node i and originating at other nodes
in iteration k is equal to

∑k
l=1 D

l
i,tλ

l .

3.1 Maximizing the Rates

Using the notation introduced in this section, maximization of the common rate λk in
kth iteration of Water-filling-Framework can be formulated as follows:

max λk

s.t.∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :

bki,t+1 = min{B, bki,t + ei,t −
k
∑

l=1

λl(crtD
l
i,t + cstF

l
i,t )}

bki,t ≥ 0, λk ≥ 0,

where ∀i ∀k : bki,1 = bi,1.

Instead of using all of the λl ’s from previous iterations in the expression for bki,t+1,

we can define the battery drop in the iteration k, for node i and time slot t as: 	bki,t =
∑k

l=1 λl
(

crtDl
i,t + cstFl

i,t

)

and only keep track of the battery drops from the previous

iteration. The intuition is as follows: to determine the battery levels in all the time
slots, we only need to know the initial battery level and how much energy (	bi,t ) is
spent per time slot. Setting 	b0i,t = 0, the problem can be written as:

max λk

s.t.∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
	bki,t = 	bk−1

i,t + λk
(

crtD
k
i,t + cstF

k
i,t

)

bki,t+1 = min
{

B, bki,t + ei,t − 	bki,t

}

5 Notice that this is consistent with the definition of a descendant in a routing tree.
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bki,t ≥ 0, λk ≥ 0

Writing the problem for each node independently, we can solve the following sub-
problem:

max λki (4)

s.t. ∀ t ∈ {1, . . . , T } :
	bki,t = 	bk−1

i,t + λki

(

crtD
k
i,t + cstF

k
i,t

)

(5)

bki,t+1 = min
{

B, bki,t + ei,t − 	bki,t

}

(6)

bki,t ≥ 0, λki ≥ 0 (7)

for each i with
∑

i,t F
k
i,t > 0, and determine λk = mini λki . Notice that we can bound

each λki by the interval [0, λkmax,i ], where λkmax,i is the rate for which node i spends all
its available energy in the first slot τ in which its rate is not fixed:

λkmax,i = bk−1
i,τ + ei,τ

crtDk
i,τ + cst

, τ = min{t : Fk
i,t = 1}.

The subproblemof determiningλki can nowbe solved by performing a binary search
in the interval [0, λkmax,i ].

Let δ denote the precision of the input variables. Note that however small, δ can
usually be expressed as a constant. This section can be summarized in the following
lemma.

Lemma 2 Maximizing-the-Rates in P-Determine-Rates can be implemented in
time

O
(

T
∑

i

log
(λkmax,i

δ

))

= O
(

nT log
( B + maxi,t ei,t

δcst

))

.

3.2 Fixing the Rates

Recall that the elements of the matrix Fk are such that Fk
i,t = 0 if the rate λi,t is

fixed for the iteration k, and Fk
i,t = 1 otherwise. At the end of iteration k ≥ 1, let

Fk+1 = Fk , and consider the following set of fixing rules:

(F1) For all (i, t) such that bki,t+1 = 0 set Fk+1
i,t = 0.

(F2) For all (i, t) such that bki,t+1 = 0 determine the longest sequence (i, t), (i, t −
1), (i, t − 2), . . . , (i, τ ), τ ≥ 1, with the property that bki,s + ei,s − 	bki,s ≤ B

∀s ∈ {t, t − 1, . . . , τ }, and set Fk+1
i,s = 0 ∀s.

(F3) For all (i, t) for which the rules (F1) and (F2) have set Fk+1
i,t = 0, and for all j

such that i ∈ P j,t , set F
k+1
j,t = 0.
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We will need to prove that these rules are necessary and sufficient for fixing the
rates. Here, “necessary” means that no rate that gets fixed at the end of iteration k
can get increased in iteration k + 1 without violating at least one of the constraints.
“Sufficient” means that all the rates λi,t with Fk+1

i,t = 1 can be increased by a positive
amount in iteration k + 1 without violating feasibility.

Lemma 3 (Necessity) No rate fixed by the rules (F1), (F2) and (F3) can be increased
in the next iteration without violating feasibility constraints.

Proof We will prove the lemma by induction on iteration k.
The base case consider the first iteration and observe the pairs (i, t) for which

F1
i,t = 0.

Suppose that b1i,t+1 = 0. The first iteration starts with all the rates being active, so
we get from the constraint (6):

b1i,t+1 = min
{

B, b1i,t + ei,t −
(

crtD
1
i,t + cst

)

λ1
}

= min

⎧

⎨

⎩

B, b1i,t + ei,t −
⎛

⎝crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λ1j,t + cstλ
1
i,t

⎞

⎠

⎫

⎬

⎭

= b1i,t + ei,t −
⎛

⎝crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λ1j,t + cstλ
1
i,t

⎞

⎠ = 0, (8)

as B > 0, where the first and the second line come from all the rates being equal in
the first iteration and the fact that all the i’s descendants whose path p j,t contains i
send α j,t fraction of their flow through i .

As every iteration only increases the rates, if we allow λi,t to be increased in the
next iteration, then [from (8)] we would get bi,t+1 < 0, which is a contradiction.
Alternatively, if we increase λ1i,t at the expense of decreasing some λ1j,t , i ∈ p j,t\{ j},
to keep bi,t+1 ≥ 0, then the solution is not max-min fair, as λ1j,t = λ1i,t = λ1. This
proves the necessity of the rule (F1). By the same observation, if we increase the rate
λ1j,t of any of the node i’s descendants j at time t , we will necessarily get bi,t+ < 0
(or would need to sacrifice the max-min fairness). This proves the rule (F3) for all the
descendants of node i , such that F2

i,t is set to 0 by the rule (F1).
Now let (i, t), (i, t − 1), (i, t − 2), . . . , (i, τ ), τ ≥ 1, be the longest sequence with

the property that: bi,t = 0 and b1i,s + ei,s −	b1i,s ≤ B ∀s ∈ {t, t − 1, . . . , τ }. Observe
that when this is the case, we have:

∀s ∈{τ, τ + 1, . . . , t − 2, t − 1} :
b1i,s+1 = min

{

B, b1i,s + ei,s − 	b1i,s

}

= b1i,s + ei,s − 	b1i,s

= b1i,s + ei,s −
⎛

⎝crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λ1j,t + cstλ
1
i,s

⎞

⎠
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This gives a recursive relation, so bi,t+1 can also be written as:

b1i,t+1 = b1i,τ +
t
∑

s=τ

ei,s − crt

t
∑

s=τ

∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λ1j,t − cst

t
∑

s=τ

λ1i,s .

If we increase λi,s or λ j,s , for any j, s such that j �= i and i ∈ P j,s , s ∈ {τ, τ +
1, . . . , t − 2, t − 1}, then either bi,t+1 becomes negative, or we sacrifice the max-min
fairness, as all the rates are equal to λ1 in the first iteration. This proves rule (F2) and
completes the proof for the necessity of rule (F3).

The inductive step suppose that all the rules are necessary for the iterations
1, 2, . . . k − 1, and consider the iteration k.

Observe that:

(o1) λ j,t ≤ λi,t , ∀ j : i ∈ P j,t , as all the rates, until they are fixed, get increased by
the same amount in each iteration, and once a rate gets fixed for some (i, t), by
the rule (F3), it gets fixed for all the node i’s descendants in the same time slot.
Notice that the inequality is strict only if λ j,t got fixed before λi,t ; otherwise
these two rates get fixed to the same value.

(o2) Once fixed, a rate never becomes active again.
(o3) If a rate λi,t gets fixed in iteration k, then λi,t = λki,t = ∑k

p=1 λp = λli,t , ∀l > k.

Suppose that bki,t+1 = 0 for some i ∈ {1, .., n}, t ∈ {1, . . . , T }. If Fk
i,t = 0, then

by the inductive hypothesis λi,t cannot be further increased in any of the iterations
k, k + 1, . . .. Assume Fk

i,t = 1. Then:

bki,t+1 = min
{

B, bki,t + ei,t −
(

crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λkj,t + cstλ
k
i,t

)}

= bki,t + ei,t −
⎛

⎝crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λkj,t + cstλ
k
i,t

⎞

⎠ = 0.

By the observation (o1), λkj,t ≤ λki,t , ∀ j such that i ∈ p j,t\{ j}, where the inequality
holds with equality if Fk

j,t = 0. Therefore, if we increase λi,t in some of the future
iterations, either bi,t+1 < 0, or we need to decrease some λ j,t ≤ λi,t , violating the
max-min fairness condition. This proves the necessity of the rule (F1). For the rule
(F3), as for all ( j, t) with j �= i , Fk

j,t = 1 and i ∈ P j,t , we have λ j,t = λi,t , none of
the i’s descendants can further increase its rate in slot t .

Now for (i, t) such that bki,t+1 = 0, let (i, t), (i, t −1), (i, t −2), . . . , (i, τ ), τ ≥ 1,

be the longest sequence with the property that: bki,s + ei,s − 	bki,s ≤ B ∀s ∈ {t, t −
1, . . . , τ }. Similarly as for the base case:

∀s ∈{τ, τ + 1, . . . , t − 2, t − 1} :
bki,s+1 = min

{

B, bki,s + ei,s − 	bki,s

}

= bki,s + ei,s −
⎛

⎝crt
∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λkj,t + cstλ
k
i,s

⎞

⎠ ,
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and we get that:

bki,t+1 = bki,τ +
t
∑

s=τ

ei,s − crt

t
∑

s=τ

∑

p j,t : j �=i∧i,p j,t∈P j,t

α j,t · λkj,t − cst

t
∑

s=τ

λki,s . (9)

If any of the rates appearing in (9), was fixed in some previous iteration, then it cannot
be further increased by the inductive hypothesis. By the observation (o1), all the rates
that are active are equal, and all the rates that are fixed are strictly lower than the active
rates. Therefore, by increasing any of the active rates from (9), we either violate battery
nonnegativity constraint or the max-min fairness criterion. Therefore, rule (F2) holds,
and rule (F3) holds for all the descendants of nodes whose rates got fixed by the rule
(F2), in the corresponding time slots. �
Lemma 4 (Sufficiency) If Fk+1

i,t = 1, then λi,t can be further increased by a positive
amount in the iteration k + 1, ∀i ∈ {1, . . . , n}, ∀t ∈ {1, . . . , T }.
Proof Suppose that Fk+1

i,t = 1. Notice that by increasing λi,t by some 	λi,t node i

spends an additional 	bi,t = cst	λi,t energy only in the time slot t. As F
k+1
i,t = 1, by

the rules (F1) and (F2), either bi,t ′ > 0 ∀t ′ > t , or there is a time slot s > t such that
bki,s + ei,s − 	bki,s > B and s < s′, where s′ = argmin

{

τ > t : bi,τ = 0
}

.

If bi,t ′ > 0 ∀t ′ > t , then the node i can spend 	bi,t = mint+1≤t ′≤T+1 b
k
i,t ′ energy,

and keep bi,t ′ ≥ 0, ∀t ′, which follows from the battery evolution (6).
If there is a slot s′ > t in which bki,s′ = 0, then let s be the minimum time slot

between t and s′, such that bki,s +ei,s −	bki,s > B. Decreasing the battery level at s by

(bki,s + ei,s − 	bki,s) − B does not influence any other battery levels, as in either case
bi,s+1 = B. As all the battery levels are positive in all the time slots between t and s,
i can spend at least min{(bki,s + ei,s − 	bki,s) − B, mint+1≤t ′≤s b

k
i,t ′ } > 0 energy at

time t and have bi,t ′ ≥ 0 ∀t ′.
By rule (F3), ∀ j such that j ∈ Pi,t we have that b j,t > 0, and, furthermore, if

∃s′ > t with b j,s′ = 0 then ∃s ∈ {t, s′} such that bki,s + ei,s − 	bki,s > B. By
the same observations as for the node i , each j ∈ Pi,t can spend some extra energy
	b j,t > 0 in the time slot t and keep all the battery levels nonnegative. In other
words, on each directed path pi,t ∈ Pi,t from the node i to the sink every node
can spend some extra energy in time slot t and keep its battery levels nonnegative.
Therefore, if we keep all other rates fixed, the rate λi,t can be increased by at least
	λi,t = min{	bi,t/cst,min j∈Pi,t 	b j,t/crt} > 0.

As each active rate λi,t can (alone) get increased in the iteration k + 1 by some
	λi,t > 0, it follows that all the active rates can be increased simultaneously by at
least mini,t 	λi,t/(T (cst + ncrt)) > 0. �
Theorem 1 Fixing rules (F1), (F2) and (F3) provide necessary and sufficient condi-
tions for fixing the rates in Water-filling-Framework.

Proof Follows directly from Lemmas 3 and 4. �
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Lemma 5 Fixing-the-Rates for P-Determine-Rates can be implemented in time
O(mT ).

Proof Rules (F1) and (F2) can be implemented for each node independently in time
O(T ) by examining the battery levels from slot T + 1 to slot 2.

For the rule (F3), in each time slot t ∈ {1, . . . , T } enqueue all the nodes i whose
rates got fixed in time slot t by either of the rules (F1), (F2) and perform a breadth-
first search over the graph determined by the enqueued nodes and the edges from
∪ j∈{1,...,n}P j,t added to the graph with reversed direction. Fix the rates of all the
nodes discovered by the breadth-first search. This gives O(m) time per slot, for a total
time of O(mT ). Combining with the time for rules (F1) and (F2), the result follows.

�
Combining Lemmas 2 and 5, we can compute the total running time of Water-

filling-Framework for P-Unsplittable-Find, as stated in the following lemma.

Lemma 6 Water-filling-Framework with Steps 2 Maximizing-the-Rates and
3 Fixing-the-Rates implemented as described in Sect. 3 runs in time:

O(nT (mT + nT log(B + max
i,t

ei,t/(δcst)))).

Proof To bound the running time of the overall algorithm that performs lexicographic
maximization, we need to first bound the number of iterations that the algorithm
performs. As in each iteration at least one sensing rate λi,t , i ∈ {1, . . . , n}, t ∈
{1, . . . , T }, gets fixed, and once fixed remains fixed, the total number of iterations is
O(nT ). The running time of each iteration is determined by the running times of the
Steps 2 (Maximizing-the-Rates) and 3 (Fixing-the-Rates) of theWater-filling-

Framework. Maximizing-the-Rates runs in O
(

nT log
(

B+maxi,t ei,t
δcst

))

(Lemma

2), whereas Fixing-the-Rates runs in O(mT ) time (Lemma 5). Therefore, the total
running time is: O

(

nmT 2 + n2T 2 log
(

B + maxi,t ei,t/(δcst)
))

. �

4 Fractional Routing

Computing a lexicographically maximum fractional routing can be formulated as a
generalized flow problem with capacitated nodes, where the nodes’ capacities change
over time and are determined by the battery states. It is not difficult to see that the
feasible region of the rates and flows in P-Fractional-Routing–Routing can be
described by the following constraints:

∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
f �
i,t + λi,t =

∑

(i, j)∈E
fi j,t

bi,t+1 = min

{

B, bi,t + ei,t − (crt f
�
i,t + cstλi,t )

}

bi,t ≥ 0, λi,t ≥ 0, fi j,t ≥ 0,∀(i, j) ∈ E,

where f �
i,t ≡ ∑

( j,i)∈E f ji,t .
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We can avoid computing the values of battery levels bi,t+1, and instead explic-
itly write the non-negativity constraints for each of the terms inside the min{.}. This
increases the number of constraints from O(mT ) to O(mT 2), but will allow us to
make more observations about the problem structure. Reordering the terms, we get
the following formulation:

∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
f �
i,t + λi,t =

∑

(i, j)∈E
fi j,t (10)

t
∑

τ=1

(crt f
�
i,τ + cstλi,t ) ≤ bi,1 +

t
∑

τ=1

ei,τ (11)

t
∑

τ=s

(crt f
�
i,τ + cstλi,t ) ≤ B +

t
∑

τ=s

ei,τ , 2 ≤ s ≤ t (12)

λi,t ≥ 0, fi j,t ≥ 0,∀(i, j) ∈ E (13)

In the kth iteration of Water-filling-Framework we have that λki,t = λk−1
i,t +

Fk
i,t · λk = ∑k

l=1 F
l
i,t · λl , where λ0i,t = 0. Let:

ubi,t = bi,1 +
t
∑

τ=1

(

ei,τ − cstλ
k−1
i,τ

)

,

uB
i,t,s = B +

t
∑

τ=s

(

ei,τ − cstλ
k−1
i,τ

)

.

Since in the iteration k all λk−1
i,t ’s are constants, the rate maximization subproblem can

be written as:

max λk

s.t. ∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } : (14)

− f �
i,t − Fk

i,t · λk +
∑

(i, j)∈E
fi j,t = λk−1

i,t (15)

t
∑

τ=1

(crt f
�
i,τ + Fk

i,τ · cstλk) ≤ ubi,t (16)

t
∑

τ=s

(crt f
�
i,τ + Fk

i,τ · cstλk) ≤ uB
i,t,s, 2 ≤ s ≤ t (17)

λk ≥ 0, fi j,t ≥ 0,∀(i, j) ∈ E (18)

Notice that in this formulation all the variables are on the left-hand side of the con-
straints, whereas all the right-hand sides are constant.
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4.1 Relation to Multi-commodity Flow

Let T = 2, and consider the constraints in (10)–(13). We claim that verifying whether
any set of sensing rates λi,t is feasible is at least as hard as solving a 2-commodity
feasible flow problem with capacitated nodes and a single sink:

Claim Any 2-commodity feasible flow problem with capacitated nodes and a single
sink can be reduced to a feasible flow problem in an energy harvesting network over
a time horizon T = 2.

Proof To prove the claim, we first rewrite the constraints in (10)–(13) as:

∑

( j,i)∈E
f ji,t + λi,t =

∑

(i, j)∈E
fi j,t , t ∈ {1, 2}

∑

( j,i)∈E
f ji,1 ≤ 1

crt
(bi,1 + ei,1 − cstλi,1)

2
∑

τ=1

∑

( j,i)∈E
f ji,τ ≤ 1

crt

(

bi,1 +
2
∑

τ=1

(

ei,τ − cstλi,τ
)

)

∑

( j,i)∈E
f ji,2 ≤ 1

crt
(B + ei,2 − cstλi,2)

λi,t ≥ 0, fi j,t ≥ 0, ∀i ∈ {1, . . . , n}, (i, j) ∈ E, t ∈ {1, 2}

Suppose that we are given any 2-commodity flow problem with capacitated nodes,
and let:

– λi,t denote the supply of commodity t at node i ;
– ui,t denote the per-commodity capacity constraint at node i for commodity t ;
– ui denote the bundle capacity constraint at node i .

Choose values of cs, crt, B, bi,1, bi,2, ei,1, ei,2 so that the following equalities are
satisfied:

ui,1 = 1

crt
· (bi,1 + ei,1 − cstλi,1

)

ui,2 = 1

crt
· (B + ei,2 − cstλi,2

)

ui = 1

crt
(bi,1 +

2
∑

τ=1

(

ei,τ − cstλi,τ )
)

Then feasibility of the given 2-commodity flow problem is equivalent to the feasibility
of (10)–(13). Therefore, any 2-commodity feasible flow problem can be stated as an
equivalent problem of verifying feasibility of sensing rates λi,t in an energy harvesting
network for T = 2. �

For T > 2, (11) and (12) are general packing constraints. If a flow graph Gt in
time slot t is observed as a flow of a commodity indexed by t , then for each node i the
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constraints (11) and (12) define capacity constraints for every sequence of consecutive
commodities s, s + 1, . . . , t , 1 ≤ s ≤ t ≤ T .

Therefore, to our current knowledge, it is unlikely that the general rate assign-
ment problem can be solved exactly in polynomial time without the use of linear
programming, as there have not been any combinatorial algorithms that solve feasible
2-commodity flow optimally.

4.2 Fractional Packing Approach

The fractional packing problem is defined as follows [30]:
Packing:Given a convex set P for which Ax ≥ 0 ∀x ∈ P , is there a vector x such

that Ax ≤ b? Here, A is a p × q matrix, and x is a q-length vector.
A vector x is an ε-approximate solution to the Packing problem if x ∈ P and

Ax ≤ (1+ ε)b. Alternatively, scaling all the constraints by 1
1+ε

, we obtain a solution

x ′ = 1
1+ε

x ∈ ( 1
1+ε

xOPT, xOPT] ⊂ ((1 − ε)xOPT, xOPT], for ε < 1, where xOPT is
an optimal solution to the packing problem. The algorithm in [30] either provides an
ε-approximate solution to the Packing problem, or it proves that no such solution
exists. Its running time depends on:

– The running time required to solve min{cx : x ∈ P}, where c = yT A, y is a given
p-length vector, and (.)T denotes the transpose of a vector.

– The width of P relative to Ax ≤ b, which is defined by ρ = maxi maxx∈P
ai x
bi
,

where ai is the i th row of A, and bi is the i th element of b.

For a given error parameter ε > 0, a feasible solution to the problemmin{β : Ax ≤
βb, x ∈ P}, its dual solution y, and CP (y) = min{cx : c = yT A, x ∈ P}, [30]
defines the following relaxed optimality conditions:

(1 − ε)βyT b ≤ yT Ax (P1)

yT Ax − CP (y) ≤ ε(yT Ax + βyT b) (P2)

The packing algorithm [30] is implemented through subsequent calls to the proce-
dure Improve-Packing:

Algorithm 2 Improve-Packing(x, ε)[30]

1: Initialize β0 = maxi ai x/bi ; α = 4β−1
0 ε−1 ln(2pε−1); σ = ε/(4αρ).

2: while maxi ai x/bi ≥ β0/2 and x, y do not satisfy (P2) do
3: For each i = 1, 2, . . . , p: set yi = (1/bi )e

αai x/bi .
4: Find a min-cost point x̂ ∈ P for costs c = yT A.
5: Update x = (1 − σ)x + σ x̂ .
6: return x .
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The running time of the ε-approximation algorithm provided in [30], for ε ∈ (0, 1],
equals O(ε−2ρ log(mε−1)) multiplied by the time needed to solve min{cx : c =
yT A, x ∈ P} and compute Ax (Theorem 2.5 in [30]).

4.2.1 Maximizing the Rates as Fractional Packing

We discussed at the beginning of this section that for the kth iterationMaximize-the-
Rates can be stated as (14)–(18). Observe the constraints (16) and (17). Since λk ,
fi j,t and all the right-hand sides in (16) and (17) are nonnegative, (16) and (17) imply
the following inequalities:

∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
Fk
i,θ · cstλk ≤ ubi,t , 1 ≤ θ ≤ t

Fk
i,θ · cstλk ≤ uB

i,t,s, 2 ≤ s ≤ t, s ≤ θ ≤ t

crt
∑

( j,i)∈E
f ji,θ ≤ ubi,t − cst

t
∑

τ=1

Fk
i,τ λ

k, 1 ≤ θ ≤ t

crt
∑

( j,i)∈E
f ji,θ ≤ uB

i,t,s − cst

t
∑

τ=s

Fk
i,τ λ

k, 2 ≤ s ≤ t, s ≤ θ ≤ t

Therefore, we can yield an upper bound λkmax for λk :

λk ≤ λkmax ≡ 1

cst
min
i,t,s≥2

{

ubi,t :
t
∑

τ=1

Fk
i,τ > 0, uB

i,t,s :
t
∑

τ=s

Fk
i,τ > 0

}

(19)

For a fixed λk , the flow entering a node i at time slot t can be bounded as:

∑

( j,i)∈E
f ji,t ≤ ui,t ≡ 1

crt
min
i,t1≥t
s≥2

{

ubi,t1 − cst

t1
∑

τ=1

Fk
i,τ λ

k, uB
i,t,s − cst

t1
∑

τ=s

Fk
i,τ λ

k

}

(20)

We choose to keep only the flows fi j,t as variables in the Packing problem. Given
a λk ∈ [0, λkmax], we define the convex set P6 via the following set of constraints:

∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
−

∑

( j,i)∈E
f ji,t +

∑

(i, j)∈E
fi j,t = λk−1

i,t + Fk
i,t · λk (21)

∑

( j,i)∈E
f ji,t ≤ ui,t (22)

fi j,t ≥ 0, ∀(i, j) ∈ E (23)

6 P is determined by linear equalities and inequalities, which implies that it is convex.
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Proposition 1 For P described by (21)–(23) and a given vector y, problemmin{c f :
c = yT A f, f ∈ P} can be solved via T min-cost flow problems.

Proof Constraint (21) is a standard flow balance constraint at a node i in a time slot
t , whereas constraint (22) corresponds to a node capacity constraint at the time t ,
given by (20). As there is no interdependence of flows over time slots, we get that the
problem can be decomposed into subproblems corresponding to individual time slots.
Therefore, to solve the problem min{c f : c = yT A f, f ∈ P} for a given vector y, it
suffices to solve T min-cost flow problems, one for each time slot t ∈ {1, 2, . . . , T }.�

The remaining packing constraints of the form Ax ≤ b are given by (16) and (17),
where x ≡ f .

Proposition 2 Ax ≥ 0 ∀ f ∈ P.

Proof As fi j,t ≥ 0 ∀(i, j) ∈ E, t ∈ {1, . . . , T }, and all the coefficients multiplying
fi j,t ’s in (16) and (17) are nonnegative, the result follows immediately. �
Lemma 7 One iteration of Improve-Packing for P-Fractional-Routing can be
implemented in time

O
(

nT 2 + T · MCF(n,m)
)

,

where MCF(n,m) denotes the running time of a min-cost flow algorithm on a graph
with n nodes and m edges.

Proof Since the flows over edges appear in the packing constraints only as the sum-
terms of the total incoming flow of a node i in a time slot t , we can use the total
incoming flow f �

i,t = ∑

( j,i)∈E f ji,t for each (i, t) as variables. Reordering the terms,
the packing constraints can be stated as:

t
∑

τ=1

f �
i,τ ≤ 1

crt

(

ubi,t − cst

t
∑

τ=1

Fk
i,τ λ

k

)

, 1 ≤ t ≤ T (24)

t
∑

τ=s

f �
i,τ ≤ 1

crt

(

uB
i,t,s − cst

t
∑

τ=s

Fk
i,τ λ

k

)

, 2 ≤ s ≤ t, 2 ≤ t ≤ T (25)

With this formulation on hand, the matrix A of the packing constraints A f � ≤ b is a
0–1 matrix that can be decomposed into blocks of triangular matrices. To see this, first
notice that for each node i constraints given by (24) correspond to a lower-triangular
0–1matrix of size T . Each sequence of constraints of type (25) for fixed i and fixed s ∈
{2, . . . , T }, and t ∈ {s, s + 1, . . . , T } corresponds to a lower-triangular 0–1 matrix of
size T−s+1.This special structure of the packing constraintsmatrix allows an efficient
computation of the dual vector y and the corresponding cost vector c. Moreover, as
constraints (24, 25) can be decomposed into independent blocks of constraints of the
type Ai f �

i ≤ bi for nodes i ∈ {1, . . . , n}, the dual vector y and the corresponding
cost vector c can be decomposed into vectors yi , ci for i ∈ {1, . . . , n}. Cost ci,t can
be interpreted as the cost of sending 1 unit of flow through node i in time slot t .
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Observe the block of constraints Ai f �
i ≤ bi corresponding to the node i . The

structure of Ai is as follows:

T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 0 0 · · · 0 0
1 1 0 · · · 0 0
...

...
...

. . .
...

...

1 1 1 · · · 1 1

T − 1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 1 1 · · · 1 1

...

2

{

0 0 0 · · · 1 0
0 0 0 · · · 1 1

1
{

0 0 0 · · · 0 1

As Ai can be decomposed into blocks of triangular matrices, each yi, j in the Improve-

Packing procedure can be computed in constant time, yielding O
(

T (T−1)
2

)

=
O
(

T 2
)

time for computing yi . This special structure of Ai also allows a fast computa-
tion of the cost vector ci . Observe that each ci,t , t ∈ {1, . . . , T } can be computed
by summing O(T ) terms. For example, ci,1 = ∑T

j=1 yi, j , ci,2 = ci,1 − yi,1 +
∑2T−1

j=T+1 yi, j , ci,3 = ci,2 − yi,2 − yi,T+1 +∑3T−2
j=2T yi, j , etc. Therefore, computing the

costs for node i takes O(T 2) time. This further implies that one iteration of Improve-
Packing takes O

(

nT 2 + T · MCF(n,m)
)

time, where MCF(n,m) denotes the
running time of a min-cost flow algorithm on a graph with n nodes and m edges. �
Lemma 8 Width ρ of P relative to the packing constraints (16) and (17) is O(T ).

Proof As ui,t is determined by the tightest constraint in which
∑

( j,i)∈E f ji,t ≡ f �
i,t

appears, we have that in every constraint given by (24) and (25):

f �
i,θ ≤ 1

crt
(ubi,t − cst

t
∑

τ=1

Fk
i,τ λ

k), 1 ≤ θ ≤ t

f �
i,θ ≤ 1

crt
(uB

i,t,s − cst

t
∑

τ=s

Fk
i,τ λ

k), 2 ≤ s ≤ t, s ≤ θ ≤ t

As the sum of f �
i j,θ over θ in any constraint from (24, 25) can include at most T terms,

it follows that ρ ≤ T ·bi
bi

= T . �
Lemma 9 Maximizing-the-Rates that uses packing algorithm from [30] can be
implemented in time: ˜O(T 2ε−2 · (nT + MCF(n,m))), where ˜O-notation ignores
poly-log terms.
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Proof Wehave from(19) thatλk ∈ [0, λkmax], therefore,we canperformabinary search
to find the maximum λk for which both min{yT A f | f ∈ P} is feasible and Packing

outputs an ε-approximate solution. Multiplying the running time of the binary search
by the running time of the packing algorithm [30], the total running time becomes:

O

(

log

(

λkmax

δ

)

ε−2ρ log(mε−1)
(

nT 2 + T · MCF(n,m)
)

)

= ˜O

(

T 2

ε2
· (nT + MCF(n,m))

)

.

�

4.2.2 Fixing the Rates

As Maximizing-the-Rates described in previous subsection outputs an ε-appro-
ximate solution in each iteration, the objective of the algorithm is not to output a
max-min fair solution anymore, but an ε-approximation. We consider the following
notion of approximation, as in [21]:

Definition 3 For a problemof lexicographicmaximization, say that a feasible solution
given as a vector v is an element-wise ε-approximate solution, if for vectors v and
vOPT sorted in nondecreasing order v ≥ (1− ε)vOPT component-wise, where vOPT is
an optimal solution to the given lexicographic maximization problem.

Let 	 be the smallest real number that can be represented in a computer, and
consider the algorithm that implements Fixing-the-Rates as stated below.

Algorithm 3 Fixing-the-Rates
1: Solve the following linear program:
2: max

∑n
i=1 F

k
i,tλ

k
i,t

3: s.t. ∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T } :
4: λki,t ≥ λk−1

i,t + Fk
i,t · λk

5: λki,t ≤ λk−1
i,t + Fk

i,t ·
(

ελk−1
i,t + (1 + ε)λk + 	

)

6: f �
i,t + λki,t = ∑

(i, j)∈E fi j,t

7: bi,t+1 = min
{

B, bi,t + ei,t −
(

crt f �
i,t + cstλki,t

)}

8: bi,t ≥ 0, λki,t ≥ 0, fi j,t ≥ 0

9: Let Fk+1
i,t = Fk

i,t , ∀i, t .
10: If λki,t < (1 + ε)(λk−1

i,t + Fk
i,t · λk ) + 	, set Fk+1

i,t = 0.

Assume that Fixing-the-Rates does not change any of the rates, but only deter-
mines what rates should be fixed in the next iteration, i.e., it only makes (global)
changes to Fk+1

i,t . Then:

Lemma 10 If the Steps 2 and 3 in the Water-filling-Framework are imple-
mented as Maximizing-the-Rates and Fixing-the-Rates from this section, then
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the solution output by the algorithm is an element-wise ε-approximate solution to the
lexicographic maximization of λi,t ∈ R.

Proof The proof is by induction.
The base case observe the first iteration of the algorithm. After rate maximization,

∀i, t : λi,t = λ1 ≥ 1

1 + ε
λ1OPT and F1

i,t = 1.

Observe that in the output of the linear program of Fixing-the-Rates, all the
rates must belong to the interval [λ1, (1 + ε)λ1 + 	]. Choose any (i, t) with
λ1i,t < (1 + ε)(λk−1

i,t + F1
i,t · λ1) + 	 = (1 + ε)λ1 + 	. There must be at least one

such rate, otherwise the rate maximization did not return an ε-approximate solution.
As
∑n

i=1 F
1
i,tλ

1
i,t = ∑n

i=1 λ1i,t is maximum, if λ1i,t is increased, then at least one other
rate needs to be decreased to maintain feasibility. To get a lexicographically greater
solution λ1i,t can only be increased by lowering the rates with the value greater than

λ1i,t . Denote by S
1
i,t the set of all the rates λ1j,τ such that λ

1
j,τ > λ1i,t . In the lexicograph-

ically maximum solution, the highest value to which λ1i,t can be increased is at most
1

|S1i,t |
(

λ1i,t +∑

λ j,τ ∈S1i,t λ
1
j,τ

)

< (1 + ε)λ1 + 	, which implies λi,t,max ≤ (1 + ε)λ1.

Therefore, if λi,t is fixed to the value of λ1, it is guaranteed to be in the ε-range of its
optimal value.

Now consider all the (i, t)’s with λ1i,t = (1+ε)λ1+	. As all the rates that get fixed

are fixed to a value λi,t = λ1 ≤ λ1i,t , it follows that in the next iteration all the rates

that did not get fixed can be increased by at least ελ1 + 	, which Fixing-the-Rates
properly determines.

The inductive step suppose that up to iteration k ≥ 2 all the rates that get fixed are
in the ε-optimal range, and observe the iteration k. All the rates that got fixed prior to
iteration k satisfy:

λki,t ≥ λk−1
i,t + Fk

i,t · λk = λk−1
i,t , and

λki,t ≤ λk−1
i,t + Fk

i,t ·
(

ελk−1
i,t + (1 + ε)λk + 	

)

= λk−1
i,t

and, therefore, they remain fixed for the next iteration, as λki,t = λk−1
i,t < (1+ ε)λk−1

i,t .

Now consider all the (i, t)’s with Fk
i,t = 1. We have that:

λki,t ≥ λk−1 + 1 · λk =
k
∑

l=1

λl

λki,t ≤ (1 + ε)
(

λk−1 + 1 · λk
)

+ 	 = (1 + ε)

k
∑

l=1

λl + 	

Similarly as in the base case, if λki,t < (1 + ε)
∑k

l=1 λl + 	, let Ski,t = {λkj,τ : λkj,τ >

λki,t }. There must be at least one such (i, t), otherwise the rate maximization did not
output an ε-approximate solution. In any lexicographically greater solution:
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λki,t,max ≤ 1

|Ski,t |

⎛

⎜

⎝
λki,t +

∑

λkj,τ ∈Ski,t
λ j,τ

⎞

⎟

⎠

< (1 + ε)

k
∑

l=1

λl + 	,

which impliesλki,t,max ≤ (1+ε)
∑k

l=1 λl . Therefore, if we fixλi,t to the value
∑k

l=1 λl ,
it is guaranteed to be at least as high as (1 − ε) times the value it gets in the lexico-
graphically maximum solution.

Finally, all the (i, t)’s with λki,t = (1+ε)
∑k

l=1 λl +	 can simultaneously increase

their rates by at least ε
∑k

l=1 λl + 	 in the next iteration, so it should be Fk+1
i,t = 1,

which agrees with Fixing-the-Rates. �
Lemma 11 An FPTAS for P-Fractional-Routing can be implemented in time:

˜O(nT (T 2ε−2 · (nT + MCF(n,m) + LP(mT, nT ))),

where LP(mT, nT ) denotes the running time of a linear program with mT variables
and nT constraints, and MCF(n,m) denotes the running time of a min-cost flow
algorithm run on a graph with n nodes and m edges.

Proof It was demonstrated in the proof of Lemma 10 that in every iteration at
least one rate gets fixed. Therefore, there can be at most O(nT ) iterations. From
Lemma 9, Maximizing-the-Rates can be implemented in time ˜O(T 2ε−2 · (nT +
MCF(n,m))). The time required for running Fixing-the-Rates is LP(mT, nT ),
where LP(mT, nT ) denotes the running time of a linear program with mT variables
and nT constraints. �

Note 1 A linear programming framework as in [8,24,31] when applied to P-
Fractional-Routing would yield a running time equal to O(n2T 2 · LP(mT, nT )).
As the running time of an iteration in our approach is dominated by LP(mT, nT ), the
improvement in running time is at least O(nT )-fold, at the expense of providing an
ε-approximation.

5 Fixed Fractional Routing

Suppose that we want to solve lexicographic maximization of the rates keeping both
the routing and the rates constant over time. Observe that, as both the routing and the
rates do not change over time, the energy consumption per time slot of each node i is
also constant over time and equal to 	bi = cstλi + crt

∑

( j,i)∈E f ji .

Proposition 3 Maximum constant energy consumption	bi can be determined in time
O(T log( bi,1+ei,1

δ
)) for each node i ∈ V \{s}, for the total time of O(nT log( bi,1+ei,1

δ
)).
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Proof Since the battery evolution can be stated as:

bi,t+1 = min
{

B, bi,t + ei,t − 	bi
}

,

maximum 	bi for which bi,t+1 ≥ 0 ∀t ∈ {1, . . . , T } can be determined via a binary
search from the interval [0, bi,1 + ei,1], for each node i . �

Similarly as in previous sections, let Fk
i = 0 if the rate i is fixed at the beginning

of iteration k, and Fk
i = 1 if it is not. Initially: F1

i = 1, ∀i . Rate maximization can
then be implemented as follows:

Algorithm 4 Maximizing-the-Rates(G, Fk, b, e, k)

1: λkmax = 1
cst

mini {	bi − cstλ
k−1
i : Fk

i = 1}
2: repeat for λk ∈ [0, λkmax], via binary search
3: Set the supply of node i to di = λk−1 + Fk

i λk , capacity of node i to ui = 1
crt

(	bi − cstλk ), for
each i

4: Set the demand of the sink to
∑

i di
5: Solve feasible flow problem on G
6: until λk takes maximum value for which the flow problem is feasible on G

The remaining part of the algorithm is to determine which rates should be fixed
at the end of iteration k. We note that in each iteration k, the maximization of the
rates produces a flow f in the graph Gk with the supply rates λki . Instead of having
capacitated nodes, we can modify the input graph by a standard procedure of splitting
each node i into two nodes i ′ and i ′′, and assigning the capacity of i to the edge
(i ′, i ′′). This allows us to obtain a residual graph Gr,k for the given flow. We claim the
following:

Lemma 12 The rate λi of a node i ∈ G can be further increased in the iteration k+1
if and only if there is a directed path from i to the sink in Gr,k .

Proof First, observe that the only capacitated edges in Gk are those corresponding to
the nodes that were split. The capacity of an edge (i ′, i ′′) corresponds to the maximum
per-slot energy the node i can spend without violating the battery non-negativity
constraint. If an edge (i ′, i ′′) has residual capacity of ur

(i ′,i ′′) > 0, then the node i can
spend additional crtur(i ′,i ′′) amount of energy keeping the battery level non-negative in
all the time slots. If (i ′, i ′′) has no residual capacity (ur

(i ′,i ′′) = 0), then the battery level
of node i reaches zero in at least one time slot, and increasing the energy consumption
per time slot leads to bi,t < 0 for some t , which is infeasible.

(⇐) Suppose that the residual graph contains no directed path from the node i to
the sink. By the flow augmentation theorem [1], the flow from the node i cannot be
increased even when the flows from all the remaining nodes are kept constant. As
the capacities correspond to the battery levels at the nodes, sending more flow from i
causes at least one node’s battery level to become negative.

(⇒) Suppose that there is a directed path from i to the sink, and let uri > 0 denote
the minimum residual capacity of the edges (split nodes) on that path. Then each node
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on the path can spend at least crturi amount of energy maintaining feasibility. Let U
denote the set of all the nodes that have a directed path to the sink in Gr,k . Then

increasing the rate of each node i ∈ U by 	λ = mini uri crt
cst + ncrt

> 0 and augmenting the

flows of i ∈ U over their augmenting paths in Gr,k each node on any augmenting path
spends at most mini uri crt amount of energy, which is at most equal to the energy the
node is allowed to spend maintaining feasibility. �
Lemma 13 Water-filling-Framework for P-Fixed-Fractional-Routing can
be implemented in time

O
(

n log
(

max
i

(bi,1 + ei,1
δ

))

(T + MF(n,m))
)

,

where MF(n,m) denotes the running time of a max-flow algorithm for a graph with
n nodes and m edges.

Proof From Proposition 3, determining the values of 	bi for i ∈ V \{s} can be
implemented in time O(nT log( bi,1+ei,1

δ
)).

Running time of an iteration of Water-filling-Framework is determined by the
running times of Maximizing-the-Rates and Fixing-the-Rates. Each iteration of
the binary search in Maximizing-the-Rates constructs and solves a feasible flow
problem, which is dominated by the time required for running a max-flow algorithm
that solves feasible flow problem on the graphG. Therefore,Maximizing-the-Rates
can be implemented in time O(log( bi,1+ei,1

δ
)MF(n,m)), whereMF(n,m) denotes the

running time of a max-flow algorithm.
Fixing-the-Rates constructs a residual graph Gr,k and runs a breadth-first search

on this graph, which can be implemented in time O(n +m) (= O(MF(n,m)) for all
the existing max-flow algorithms).

Every iteration of Water-filling-Framework fixes at least one of the rates λi ,
i ∈ V \{s}, which implies that there can be at most n iterations.

Therefore, the total running time is

O
(

n log
(

max
i

(bi,1 + ei,1
δ

))

(T + MF(n,m))
)

.

�

6 Determining a Routing

In this section we demonstrate that solving P-Unsplittable-Routing and P-
Routing-Tree is NP-hard for both problems. Moreover, we show that it is NP-hard
to obtain an approximation ratio better than �(log n) for P-Routing-Tree. For P-
Unsplittable-Routing, we design an efficient combinatorial algorithm for a relaxed
version of this problem–it determines a time-invariable unsplittable routing that max-
imizes the minimum rate.
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Fig. 7 A reduction from P-Non-uniform-Load-Balancing for proving NP-hardness of P-
Unsplittable-Routing. Jobs are represented by nodes Ji , machines by nodes Mj , and there is an edge
from Ji toMj if job Ji can be executed onmachineMj . Each job Ji has time requirement ri ∈ {1/2, 1}, and
∑k

i=1 Ji = n. Available energies at the nodes are shown in the boxes next to the nodes. If at the optimum
of P-Unsplittable-Routing λJi = ri and λMj = 1, then there is an assignment of jobs to the machines
such that the sum requirement of jobs assigned to each machine equals 1

6.1 Unsplittable Routing

Lemma 14 P-Unsplittable-Routing is NP-hard.

Proof The proof of NP-hardness for P-Unsplittable-Routing is a simple extension
of the proof of NP-hardness for max-min fair unsplittable routing provided in[21].
We use the same reduction as in [21], derived from the non-uniform load balancing
problem [22]. From [21,22], the following problem is NP-hard:

P-Non-uniform-Load-Balancing: Let J = {J1, . . . , Jk} be a set of jobs, and
M = {M1, . . . , Mn} be a set of machines. Each job Ji has a time requirement ri ∈
{1/2, 1}, and the sum of all the job requirements is equal to n:

∑k
i=1 ri = n. Each job

Ji ∈ J can be run only on a subset of the machines Si ⊂ M . Is there an assignment
of jobs to machines, such that the sum requirement of jobs assigned to each machine
Mj equals 1?

For a given instance of P-Non-uniform-Load-Balancing we construct an
instance of P-Unsplittable-Routing as follows (Fig. 7). Let T = 1, and cst =
crt = 1. Create a node Ji for each job Ji ∈ J , a node Mj for each machine Mj ∈ M ,
and add an edge (Ji , Mj ) if Mj ∈ Si . Connect all the nodes Mj ∈ M to the sink. Let
available energies at the nodes be bJi = ri , bMj = 2.

Suppose that the instance of P-Non-uniform-Load-Balancing is a “yes”
instance, i.e., there is an assignment of jobs to machines such that the sum requirement
of jobs assigned to each machine equals 1. Observe the following rate assignment:
λ∗ = {λJi = ri , λMj = 1}. This rate assignment is feasible only for the unsplittable
routing in which Mj ’s descendants are the jobs assigned to Mj in the solution for P-
Non-uniform-Load-Balancing. Moreover, as in this rate assignment all the nodes
spend all their available energies and since

∑k
i=1 bJi = ∑k

i=1 ri = n, it is not hard to
see that this is the lexicographically maximum rate assignment that can be achieved
for any instance of P-Non-uniform-Load-Balancing. If the instance of P-Non-
uniform-Load-Balancing is a “no” instance, then P-Unsplittable-Routing at
the optimum necessarily produces a rate assignment that is lexicographically smaller
than λ∗.
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Therefore, if P-Unsplittable-Routing can be solved in polynomial time, then
P-Non-uniform-Load-Balancing can also be solved in polynomial time. �

As the proof of Lemma 14 is constructed for T = 1, it follows that P-Unsplittable-
Routing is NP-hard for general T , in either time-variable or time-invariable setting.

On the other hand, determining a time-invariable unsplittable routing that guar-
antees the maximum value of the minimum sensing rate over all time-invariable
unsplittable routings is solvable in polynomial time, and we provide a combinato-
rial algorithm that solves it below.

We first observe that in any time-invariable unsplittable routing, if all the nodes are
assigned the same sensing rate λ, then every node i spends a fixed amount of energy
	bi per time slot equal to the energy spent for sensing and sending own flow and for
forwarding the flow coming from the descendant nodes: 	bi = λ

(

cst + crtDi,t
)

.
The next property we use follows from the integrality of the max flow problemwith

integral capacities (see, e.g., [1]). This property was stated as a theorem in [20] for
single-source unsplittable flows, and we repeat it here for the equivalent single-sink
unsplittable flow problem:

Theorem 2 [20] Let G = (N , E) be a given graph with the predetermined sink s.
If the supplies of all the nodes in the network are from the set {0, λ}, λ > 0, and
the capacities of all the edges/nodes are integral multiples of λ, then: if there is a
fractional flow of value f , there is an unsplittable flow of value at least f . Moreover,
this unsplittable flow can be found in polynomial time.

Note 2 For the setting of Theorem 2, any augmenting-path or push-relabel based
max flow algorithm produces a flow that is unsplittable, as a consequence of the
integrality of the solution produced by these algorithms. We will assume that the used
max-flow algorithm has this property.

The last property we need is that our problem can be formulated in the setting of
Theorem 2. We observe that for a given sensing rate λ, each node spends cstλ units
of energy for sensing, whereas the remaining energy can be used for routing the flow
originating at other nodes. Therefore, for a given λ, we can set the supply of each node
i to λ, set its capacity to ui = (	bi − cstλ)/crt (making sure that	bi −cstλ ≥ 0), and
observe the problem as the feasible flow problem. For any feasible unsplittable flow
solution with all the supplies equal to λ, we have that flow through every edge/node
equals the sum flow of all the routing paths that contain that edge/node. As every path
carries a flow of value λ, the flow through every edge/node is an integral multiple
of λ. Therefore, to verify whether it is feasible to have a sensing rate of λ at each
node, it is enough to down-round all the nodes’ capacities to the nearest multiple of
λ: ui = λ · �(	bi − cstλ)/(crtλ)�, and apply the Theorem 2.

An easy upper bound for λ is λmax = mini 	bi/cst, which follows from the battery
nonnegativity constraint. The algorithm becomes clear now:

Lemma 15 Maxmin-Unsplittable-Routing runs in time

O(log(max
i

(bi,1 + ei,1)/(cstδ))(MF(n + 1,m))),
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Algorithm 5 Maxmin-Unsplittable-Routing(G, b, e)
1: Perform a binary search for λ ∈ [0, λmax].
2: For each λ chosen by the binary search set node supplies to λ and node capacities to ui =

λ · �(	bi − cstλ)/(crtλ)�. Solve feasible flow problem.
3: Return the maximum feasible λ.

where MF(n,m) is the running time of a max-flow algorithm on an input graph with
n nodes and m edges.

6.2 Routing Tree

If it was possible to find the (either time variable or time-invariable) max-min fair
routing tree in polynomial time for any time horizon T , then the same result would
follow for T = 1. It follows that if P-Routing-Tree NP-hard for T = 1, it is also
NP-hard for any T > 1. Therefore, we restrict our attention to T = 1.

Assume w.l.o.g. ei,1 = 0 ∀i ∈ V \{s}. Let T denote a routing tree on the given
graph G, and DT

i denote the number of descendants of a node i in the routing tree T .
Maximization of the common rate λi = λ over all routing trees can be stated as:

max
T

min
i∈N bi/(cst + crtD

T
i ) (26)

This problem is equivalent to maximizing the network lifetime for λi = 1 ∀i ∈ V \{s}
as studied in [5]. This problem, which we call P-Maximum-Lifetime-Tree, was
proved to be NP-hard in [5] using a reduction from the Set-Cover problem [19].
The instance used in [5] for showing the NP-hardness of the problem has the property
that the equivalent problem of finding a tree with the lexicographically maximum rate
assignment, P-Routing-Tree, is such that at the optimum λ1 = λ2 = · · · = λn = λ.
Therefore, P-Routing-Tree is also NP-hard.

We will strengthen the hardness result here and show that the lower bound on the
approximation ratio for the P-Routing-Tree problem is �(log n), unless P = N P .
Notice that because we are using the instance for which at the optimum λi = λ ∀i ,
the meaning of the approximation ratio is clear. In general, the optimal routing tree
can have a rate assignment with distinct values of the rates, in which case we would
need to consider an approximation to a vector {λi }i∈{1,...,n}. However, we note that
for any reasonable definition of approximation (e.g., element-wise or prefix-sum as
in [21]) our result for the lower bound is still valid. As for the instance we use P-
Routing-Tree is equivalent to the P-Maximum-Lifetime-Tree problem, the lower
bound applies to both problems.

We extend the reduction from the Set-Cover problemused in [5] to prove the lower
bound on the approximation ratio. In the Set-Cover problem, we are given elements
1, 2, . . . , n∗ and sets S1, S2, . . . , Sm ⊂ {1, 2, . . . , n∗}. The goal is to determine the
minimum number of sets from S1, . . . , Sm that cover all the elements {1, . . . , n∗}.
Alternatively, the problem can be recast as a decision problem that determines whether
there is a set cover of size k or not. Then the minimum set cover can be determined
by finding the smallest k for which the answer is “yes”.
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Fig. 8 A lower bound on the approximation ratio for P-Routing-Tree. Nodes 1, 2, . . . , n∗ correspond to
the elements, whereas nodes S1, S2, . . . , Sm correspond to the sets in the Set-Cover problem. An element
node i is connected to a set node S j if in the Set-Cover problem i ∈ S j . If there is a set cover of size k,
then at λ = 1 all the non-set-cover nodes are connected to the tree rooted at the node l, whereas all the set
cover nodes and all the element nodes are in the tree rooted at sc. The line-topology graphs represented by
crossed circles are added to limit the size of an approximate solution to the Set-Cover problem

Suppose that there exists an approximation algorithm that solves P-Routing-Tree
(or P-Maximum-Lifetime-Tree) with the approximation ratio r . For a given instance
of Set-Cover, construct an instance of P-Routing-Tree as in Fig. 8 and denote it by
G. This reduction is similar to the reduction used in [5], withmodifications beingmade
by adding line-topology graphs, and bymodifying the node capacities appropriately to
limit the size of the solution to the corresponding Set-Cover problem. Let lx denote
a directed graph with line topology of size x . Assume that all the nodes in any lx

have capacities that are non-constraining. By the same observations as in the proof of
NP-completeness of P-Maximum-Lifetime-Tree [5], if there is a routing tree that
achieves λ = 1, then there is a set cover of size k for the given input instance of
Set-Cover.

Now observe a solution that an approximation algorithm with the ratio r would
produce, that is, an algorithm for which 1

r ≤ λ ≤ 1 when λOPT = 1.

Lemma 16 In any routing tree for which 1
r ≤ λ ≤ 1, each node C j can have at most

one descendant.

Proof Suppose that there is some routing tree T in which some C j , j = {1, . . . ,m}
has more than 1 descendants. Then C j must have at least one element node as its
descendant. But if C j has an element node as its descendant, then the line-topology
graph connected to that element node must also be in C j ’s descendant list, because T
must contain all the nodes, and a line-topology graph connected to the element node
has no other neighbors. Therefore, C j has at least 2r + 1 descendants. If λ ≥ 1

r , then
the energy consumption at node C j is 2r+2

r > 2. But the capacity of the node C j is 2,
which is strictly less than the energy consumption; therefore, a contradiction. �

Lemma 16 implies that if there is a routing tree that achieves 1
r ≤ λ ≤ 1, then all

the element nodes will be connected to the tree rooted at sc through the set nodes they
belong to. Therefore, the subtree rooted at sc will correspond to a set cover. The next
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question to be asked is how large can this set cover be (as compared to k)? The next
lemma deals with this question.

Lemma 17 If there is a routing tree T that achieves 1
r ≤ λ ≤ 1, then the subtree

rooted at sc in T contains at most p ≤ 3rk nodes.

Proof Let T be a routing tree that achieves 1
r ≤ λ ≤ 1.

The capacity of the node sc determines the number of the set nodes that can be
connected to sc. As all the element nodes (and line-topology graphs connected to
them) are in the subtree rooted at sc, when there are p set nodes connected to sc, sc
has 2n∗r + pn∗r descendants. As each node has 1

r ≤ λ ≤ 1 sensing rate, the energy
consumption at the node sc is esc = (2n∗r + pn∗r + 1)λ. For the solution to be
feasible, it must be esc ≤ bsc. Therefore:

(2n∗r + pn∗r + 1)λ ≤ 2n∗r + kn∗r + 1

⇔ p ≤ 1

λ
· 2n

∗r + kn∗r + 1

n∗r
− 2n∗r + 1

n∗r

= 1

λ

(

2 + k + 1

n∗r

)

− 2 − 1

n∗r

As λ ≥ 1
r : p ≤ (2+ k)r + 1

n∗ − 2− 1
n∗r ≤ (2+ k)r ≤ k · 3r , where the last inequality

comes from k ≥ 1. �
The last lemma implies that if we knew how to solve P-Routing-Tree in polyno-

mial time with the approximation ratio r , then for an instance of Set-Coverwe could
run this algorithm for k = {1, 2, . . . ,m − 1} (verifying whether k = m is a set cover
is trivial) and find a 3r -approximation for the minimum set cover, which is stated in
the following lemma.

Lemma 18 If there is a polynomial-time r-approximation algorithm for P-Routing-
Tree, then there is a polynomial-time 3r-approximation algorithm for Set-Cover.

Proof Suppose that therewas an algorithm that solvesP-Routing-Tree in polynomial
timewith some approximation ratio r . For a given instance of Set-Cover construct an
instance of P-Routing-Tree as in Fig. 8. Solve (approximately) P-Routing-Tree
for k ∈ {1, . . . ,m − 1}. In all the solutions, it must be λ ≤ 1. Let km denote the
minimum k ∈ {1, . . . ,m − 1} for which λ ≥ 1

r . Then the minimum set cover size for
the input instance of Set-Cover is k∗ ≥ km , otherwise there would be some other
k′
m < km for which λ ≥ 1

r . From Lemmas 16 and 17, the solution to the constructed
instance of P-Routing-Tree corresponds to a set cover of size p ≤ 3r · km for the
input instance. But this implies p ≤ 3r · k∗, and, therefore, the algorithm provides a
3r -approximation to the Set-Cover. �
Theorem 3 It is NP-hard to approximately solve P-Routing-Tree with an approxi-
mation ratio better than �(log n).

Proof The lower bound on the approximation ratio of Set-Cover was shown to be
�(log n) in [25].
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Table 3 Running times of the algorithms for the Water-filling-Framework implementation

Problem Running time

P-Determine-Rates O(nT (nT log(
B+maxi,t ei,t

(δcst)
) + mT ))

P-Fixed-Fractional-Routing O(n log(
bi,1+ei,1

δ
)(T + MF(n,m)))

P-Fractional-Routing ˜O(nT (T 2ε−2 · (nT + MCF(n,m) + LP(mT, nT )))

The proof for the lower bound on the approximation ratio given in [25] was derived
assuming a polynomial relation between n∗ and m. Therefore, the lower bound of
�(log n∗) holds for m = n∗c∗

, where c∗ ∈ R is some positive constant. Assume
that n∗ ≥ 3. The graph given for an instance of Set-Cover (as in Fig. 8) contains
n = 2rn∗ + mrn∗ + 3 ≤ rn∗c′

nodes, for some other constant c′ > 1. Therefore:

n∗ ≥ c′
√

n

r
. As r ≥ 1

3
c log n∗, it follows that:

r ≥ 1

3
c log c′

√

n

r
= c

3c′ (log n − log r)

⇔ c

3c′ log r + r ≥ c

3c′ log n ⇒ r ≥ c′′ log n,

for some c′′ ∈ R. �

7 Conclusions and Future Work

This paper presents a comprehensive algorithmic study of themax-min fair rate assign-
ment and routing problems in energy harvesting networks with predictable energy
profiles. We develop algorithms for the Water-filling-Framework implementa-
tion under various routing types. The running times of the developed algorithms are
summarized in Table 3. The algorithms provide important insights into the structure of
the problems, and can serve as benchmarks for evaluating distributed and approximate
algorithms possibly designed for unpredictable energy profiles.

The results reveal interesting trade-offs between different routing types. For exam-
ple, while we provide an efficient algorithm that solves the rate assignment in any
routing specified at the input, we also show that determining a routing with the lexico-
graphically maximum rate assignment for any routing tree or an unsplittable routing
is NP-hard. On the positive side, we are able to construct a combinatorial algorithm
that determines a time-invariable unsplittable routing which maximizes the minimum
sensing rate assigned to any node in any time slot.

Fractional time-variable routing provides the best rate assignment (in terms of lexi-
cographic maximization), and both the routing and the rate assignment are determined
jointly by one algorithm. However, as demonstrated in Sect. 4, the problem is unlikely
to be solved optimally without the use of linear programming, incurring a high running
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time. While we provide an FPTAS for this problem, reducing the algorithm running
time by a factor of O(nT ) (as compared to the framework of [8,24,31]), the proposed
algorithm still requires solving O(nT ) linear programs.

If fractional routing is restricted to be time-invariable and with constant rates, the
problem can be solved by a combinatorial algorithm, which we provide in Sect. 5.
However, as discussed in the introduction, constant sensing rates often result in the
underutilization of the available energy.

There are several directions for future work. For example, extending the model
to incorporate the energy consumption due to the control messages exchange would
provide a more realistic setting. Moreover, designing algorithms for unpredictable
energy profiles that can be implemented in an online and/or distributed manner is of
high practical significance.

Acknowledgments The authors are grateful to Mihalis Yannakakis and David Johnson for useful discus-
sions.
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