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Resource Allocation and Rate Gains
in Practical Full-Duplex Systems

Jelena Marašević, Jin Zhou, Harish Krishnaswamy, Yuan Zhong, and Gil Zussman

Abstract— Full-duplex (FD) communication has the potential
to substantially increase the throughput in wireless networks.
However, the benefits of FD are still not well understood.
In this paper, we characterize the FD rate gains in both single-
channel and multi-channel use cases. For the single-channel
case, we quantify the rate gain as a function of the remaining
self-interference (SI) and signal-to-noise ratio values. We also
provide a sufficient condition under which the sum of uplink and
downlink rates on an FD channel is biconcave in the transmission
power levels. Building on these results, we consider the multi-
channel case. For that case, we introduce a new realistic model
of a compact (e.g., smartphone) FD receiver and demonstrate
its accuracy via measurements. We study the problem of jointly
allocating power levels to different channels and selecting the
frequency of maximum SI suppression, where the objective is
to maximize the sum of the rates over uplink and downlink
orthogonal frequency division multiplexing channels. We develop
a polynomial time algorithm, which is nearly optimal, in practice,
under very mild restrictions. To reduce the running time, we
develop an efficient nearly optimal algorithm under the high
SINR approximation. Finally, we demonstrate via numerical
evaluations the capacity gains in different use cases and obtain
insights into the impact of the remaining SI and wireless channel
states on the performance.

Index Terms— Full-duplex, modeling, resource allocation.

I. INTRODUCTION

FULL-DUPLEX (FD) communication – simultaneous
transmission and reception on the same frequency chan-

nel – holds great promise of substantially improving the
throughput in wireless networks. The main challenge hindering
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the implementation of practical FD devices is high self-
interference (SI) caused by signal leakage from the transmitter
into the receiver circuit. The SI signal is usually many orders
of magnitude higher than the desired signal at the receiver’s
input, requiring over 100dB (i.e., by 1010 times) of self-
interference cancellation (SIC).

Cancelling SI is a very challenging problem. Even though
different techniques of SIC were proposed over a decade
ago, only recently receiver designs that provide sufficient
SIC to be employed in Wi-Fi and cellular networks emerged
(see [2] and references therein for an overview). Exciting
progress was made in the last few years by various research
groups demonstrating that a combination of SIC techniques
employed in both analog and digital domains can provide
sufficient SIC to support practical applications [3]–[16].

While there has been significant interest in FD from both
industry and academia [3]–[24], the exact rate gains resulting
from the use of FD are still not well understood. The first
implementations of FD receivers optimistically envisioned
100% rate improvement (e.g., [5], [12]). To achieve such an
increase in data rates, the FD receiver would need perfect SIC,
namely, to cancel SI to at least one order of magnitude below
the noise floor to render it negligible. The highest reported
SIC [12], however, suppresses the SI to the level of noise.

Despite this insufficient cancelling capabilities, much of the
work on FD rate improvement assumes perfect SIC in the
FD receiver [18]–[21]. While non-negligible SI has also been
considered [22]–[24], there are still no explicit bounds on the
rate gains for given FD circuit parameters and parameters of
the wireless signal. Moreover, from a modeling perspective,
the frequency selectivity of SIC has not been considered in
any analytical work. This is an important feature that is
inherent in conventional compact implementations of an FD
receiver, such as that found in small-form factor mobile devices
(e.g., smartphones and tablets), where frequency selectivity is
mainly a consequence of the cancellation in the RF domain.1

A. Summary of Contributions
The main contribution of this paper is a thorough analyt-

ical study of rate gains from FD under non-negligible SI.
We consider both single-channel and multi-channel orthog-
onal frequency division multiplexing (OFDM) scenarios. For
the multi-channel case, we develop a new model for frequency-
selective SIC in small-form factor receivers. Our results
provide explicit guarantees on the rate gains of FD, as a
function of receivers’ signal-to-noise ratios (SNRs) and SIC
profile. Our analysis provides insights into the structure of the

1See our recent work [25], [26] and Section III for more details.
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Fig. 1. Some possible uses of full-duplex: (a) simultaneous UL and DL
for one MS; (b) UL and DL used by two different MSs and caused inter-
node interference (red dashed line), (c) simultaneous UL and DL over OFDM
channels.

sum of uplink (UL) and downlink (DL) rates under FD, which
will be useful for future work on FD MAC layer algorithm
design.

Specifically, we consider three different use cases of FD,
as illustrated in Fig. 1: (i) a single channel bidirectional link,
where one mobile station (MS) communicates with the base
station (BS) both on the UL and on the DL (Fig. 1(a));
(ii) two single channel unidirectional links, where one MS
communicates with the BS on the UL, while another MS
communicates with the BS on the DL (Fig. 1(b)); and (iii) a
multi-channel bidirectional link, where one MS communicates
with the BS over multiple OFDM channels, both on the UL
and on the DL (Fig. 1(c)).

1) Models of Residual SI: For SI, we consider two different
models. For the BS in all use cases and the MS in use case (i),
we model the remaining SI after cancellation as a constant
fraction of the transmitted signal. Such design is possible for
devices that do not require a very small form factor (e.g., base
stations), and was demonstrated in [12].

In the multi-channel case, we rely on the characteristics
of RFIC receivers that we recently designed [25], [26] and
develop a frequency selective model for the remaining SI in
a small form-factor device (Section III). We demonstrate the
accuracy of the developed model via measurements with our
receivers [25], [26]. We note that a frequency-selective profile
of SIC that we model is inherent to RF cancellers with flat
amplitude and phase response (see Section III). A mixed-signal
SIC architecture [16] where the digital TX signal is processed
and upconverted to RF for cancellation does not necessarily
have flat amplitude and phase response. However, we do not
consider this architecture because it requires an additional up-
conversion path compared to the architecture of this work, and
this additional path introduces its own noise and distortion,
limiting the resultant RF SIC.

2) Sum Rate Maximization: We focus on the problem of
maximizing the sum of UL and DL rates under FD (referred
to as the sum rate in the rest of the paper). The sum rate,
in general, is neither concave nor convex in the transmission
power levels, since the remaining SI after cancellation depends
on the transmission power level. Due to the lack of a good
problem structure, existing analytical results (see [22]–[24])
are often restricted to specialized settings. Yet, we obtain
several analytical results on the FD rate gains, often under mild
restrictions, by examining closely the structural properties of
the sum rate function.
Single-Channel Results. In the single-channel cases, we prove
that if any rate gain can be achieved from FD, then the

gain is maximized by setting the transmission power levels
to their respective maximum values. This result is somewhat
surprising because of the lack of good structural properties of
the sum rate. We then derive a sufficient condition under which
the sum rate is biconcave2 in the transmission power levels,
and show that when this condition is not satisfied, one cannot
gain more than 1b/s/Hz (additively) from FD as compared to
time-division duplex (TDD). We note that although the model
for the remaining SI in the single channel case is relatively
simple, it nonetheless captures the main characteristics of the
FD receivers. Moreover, the results for the single channel case
under this model are fundamental for analyzing the multi-
channel setting, and often extend to this more general setting.
Multi-Channel Results. In the multi-channel case, we use
the frequency-selective SI model for the MS receiver that is
introduced in Section IV-A and motivated by FD implementa-
tion challenges discussed in Section III. Based on this model,
we study the problem of transmission power allocation over
OFDM channels and frequency selection, where the objective
is to maximize the sum of the rates over UL and DL OFDM
channels (in this case, frequency refers to the frequency of
maximum SIC of the SI canceller). Although in general it is
hard to find an optimal solution to this problem, we develop
an algorithm that converges to a stationary point (in practice,
a global maximum) under two mild technical conditions.
One condition ensures that the sum rate is biconcave in
transmission power levels. This restriction is mild, since we
prove that when it does not hold, the possible gains from
FD are small. The other condition imposes bounds on the
magnitude of the first derivative of the sum rate in terms
of maximum SIC frequency, and has a negligible impact
on the sum rate in OFDM systems with a large number of
channels, because it can only affect up to 2 OFDM channels
(see Section VI-A for more details).

Although the algorithm in practice converges to a near-
optimal solution and runs in polynomial time, its running
time is relatively high. Therefore, we consider a high SINR
approximation of the sum rate, and derive fixed optimal power
allocation and maximum SIC frequency setting that maximizes
the sum rate up to an additive ε in time O(K log(1/ε)), for
any given ε, where K is the number of channels.
Numerical Results. Finally, we note that throughout the paper,
we provide numerical results that quantify the rate gains
in various use cases and illustrate the impact of different
parameters on these gains. For example, for the multi-channel
case, we evaluate the rate gains using measured SI of our
RFIC receiver [25], [26]. We use algorithms for the general
SINR regime and for the high SINR regime and compare their
results to those obtained by allocating power levels equally
among the OFDM channels. Our results suggest that whenever
the rate gains from FD are non-negligible, all considered
power allocation policies yield similar rate gains. Therefore,
one of the main messages of our work is that whenever
it is beneficial to use FD, simple power allocation policies
suffice.

2A function is biconcave, if there exists a partition of variables into two sets,
such that the function is concave when variables from either set are fixed.
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B. Organization of the Paper

The rest of the paper is organized as follows. Section II
reviews related work and Section III outlines the challenges
in implementing FD receivers. Section IV introduces the new
model of a small form factor FD receiver, and the model for the
various use cases. Section V provides analysis and numerical
evaluation for the sum rate maximization on a single channel
for use cases (i) and (ii). Sections VI and VII provide analy-
sis, algorithms, and numerical evaluation for use case (iii).
We conclude in Section VIII. Due to space constraints, some
of the proofs are omitted and are instead provided in [27].

II. RELATED WORK

Possible rate gains from FD have been studied in [18]–[24],
with much of the work [18]–[21] focusing on perfect SIC.
Unlike this body of work, we focus on rate gains from FD
communication under imperfect SIC.

Non-negligible SI has been considered in [22]–[24]. A suf-
ficient condition for achieving positive rate gains from FD on
a bidirectional link has been provided in [22], for the special
case of equal SINRs on the UL and DL. This condition does
not quantify the rate gains.

Power allocation over orthogonal bidirectional links was
considered in [23] and [24] for MIMO and OFDM systems,
respectively. The model used in [24] assumes the same amount
of SIC and equal power allocation on all channels, which is a
less general model than the one that we consider.

A more detailed model with different SIC over OFDM
channels was considered in [23]. The model from [23] does
not consider dependence of SIC in terms of canceller fre-
quency (although, unlike our work, it takes into account
the transmitter’s phase noise). Optimal power allocation that
maximizes one of the rates when the other is fixed is derived
for equal power levels across channels, while for the gen-
eral case of unequal power levels, [23] only provides a
heuristic.

Our work relies on structural properties of the sum rate
to derive near-optimal power allocation and maximum SIC
frequency setting that maximizes the sum rate. While the
model we consider is different than [22] and [23], we provide
a more specific characterization of achievable rate gains, and
derive results that provide insights into the rate dependence on
the power allocation. These results allow us to solve a very
general problem of rate maximization.

III. FD IMPLEMENTATION CHALLENGES

In this section, we overview the challenges associated with
the implementation of compact FD radios. These challenges
motivate the model of remaining SI that is introduced in
Section IV-A and used in the design of sum-rate maximization
algorithms (Section VI).

Fig. 2 shows the block diagram of a full-duplex transceiver.
There are two antenna interfaces that are typically considered
for full-duplex operation: (i) an antenna pair and (ii) a circu-
lator. The advantage of using a circulator is that it allows a
single antenna to be shared between the transmitter (TX) and
the receiver (RX). SIC must be performed in both the RF and
digital domains to achieve in excess of 100dB SI suppression.

Fig. 2. Block diagram of a full-duplex transceiver employing RF and digital
cancellation.

The RF canceller taps a reference signal at the output of the
power amplifier (PA) and performs SIC at the input of the
low-noise amplifier (LNA) at the RX side [28].

Typically, 20-30dB of SIC is required from the RF, given
that the antenna interface typically has a TX/RX isolation of
20-30dB [29]. Thus, an overall 50-60dB RF TX/RX isolation
is achieved before digital SIC is engaged. This amount of
RF TX/RX isolation is critical to alleviate the RX linearity
and the analog-to-digital conversion (ADC) dynamic range
requirements [2], [28]. Digital cancellation further cancels the
linear SI as well as the non-linear distortion products generated
by the RX or the RF canceller.

A mixed-signal SIC architecture has been proposed in [16],
where the digital TX signal is processed and upconverted to
RF for cancellation. However, this requires a separate up-
conversion path which introduces its own noise and distortion.
Moreover, the noise and distortion of the TX analog and RF
circuits (such as the power amplifier) are not readily captured
in the cancellation signal, limiting the resultant RF SIC.
In addition, the dedicated up-conversion path results in area
and power overhead. Because of these reasons, we are not
considering this SIC architecture in this paper.

For wideband SIC, the transfer function of the canceller
must closely track that of the antenna interface across fre-
quency. However, the frequency dependence of the inherent
antenna interface isolation together with selective multi-path-
ridden SI channels render this challenging for the RF canceller
in particular. The net antenna interface isolation amplitude
and phase response can vary significantly with frequency.
A rapidly-varying phase response is representative of a large
group delay, requiring bulky delay lines to replicate the
selectivity in the RF canceller [12], [28].

The fundamental challenge associated with wideband SIC
at RF in a small form-factor and/or using integrated circuits
is the generation of large time delays. The value of true time
delay is linearly proportional to the dimension of the delay
structure and inversely proportional to the wave velocity in
the medium. To generate 1ns delay in a silicon integrated
circuit, a transmission line of 15cm length is required as the
relative dielectric constant of silicon oxide is 4. A conventional
integrated RF SI canceller with dimensions less than 1mm2

will therefore exhibit negligible delay. Note that the canceller
phase response can be calculated by integrating the delay
with respect to frequency, and conventional integrated RF SI
cancellers typically have a flat amplitude response [25], [26].
Therefore, the amplitude and phase response of the canceller
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Fig. 3. (a) RFIC receiver with RF SI cancellation [25], [26] and the
two antenna interfaces used in our measurements: (b) an antenna pair and
(c) a circulator.

Fig. 4. Measured isolation amplitude and group delay of (a) a PCB
antenna pair and (b) a commercial 2110-2170MHz miniature circulator
from Skyworks [29], and the resultant TX/RX isolation using the integrated
RF canceller with flat amplitude and phase response from [25] and [26]
with (c) the antenna pair and (d) the circulator compared to the SIC model.

can be assumed to be flat with respect to frequency when com-
pared with antenna interface isolation, limiting the cancellation
bandwidth [2], [26].

While achieving wideband RF SI cancellation using
innovative RFIC techniques is an active research topic
(e.g., frequency domain equalization based RF SI cancellation
in [30]), in this paper we focus on compact flat amplitude- and
phase-based RF cancellers, such as the one we implemented
in the RFIC depicted in Fig. 3(a) [25], [26].

In [25] and [26], the RF canceller is embedded in the RX’s
LNA, and consists of a variable amplifier and a phase shifter.
The RF canceller adjusts the amplitude and the phase of a TX
reference signal tapped from the PA’s output performing SIC at
the RX input. Thanks to the co-design of RF canceller and RX
in a noise-cancelling architecture, the work in [25] and [26]
is able to support antenna interface with about 20dB TX/RX
isolation with minimum RX sensitivity degradation.

We measured isolation amplitude and group delay response
of (i) a PCB antenna pair (see Fig. 3(b)) and (ii) a commer-
cial 2110-2170MHz miniature circulator from Skyworks [29]
(see Fig. 3(c)). The results are shown in Fig. 4(a) and Fig. 4(b),
respectively. The resultant TX/RX isolations using an RF can-
celler with flat amplitude and phase response after the antenna
interfaces (i) and (ii) are shown in Fig. 4(c) and Fig. 4(d),
respectively. As Fig. 4(c) and Fig. 4(d) suggest, for −60dB
TX/RX isolation after RF cancellation, the bandwidths are
about 4MHz and 2.5MHz, respectively.

TABLE I

NOMENCLATURE

IV. MODEL

We consider three use cases of FD: (i) a bidirectional link,
where one mobile station (MS) communicates with the base
station (BS) both on the UL and on the DL (Fig. 1(a)),
(ii) two unidirectional links, where one MS is communicating
with the BS on the UL, while another MS is communicating
with the BS on the DL (Fig. 1(b)), and (iii) multiple orthogonal
bidirectional links (Fig. 1(c)). Note that in (ii) only the BS is
operating in FD.

For the multi-channel FD (use case (iii)), we assume that the
network bandwidth of size B is subdivided into K orthogonal
frequency channels of width B/K each, and index the fre-
quency channels with k ∈ {1, ..., K}. An example of such
sub-channelization is OFDM with each frequency channel
consisting of an integral number of subcarriers.

For all notation that relates to the BS, we use b in the
subscript. For the notation that relates to the MS in use
cases (i) and (iii), we use m in the subscript, while in the
use case (ii) we use m1 and m2 to refer to MS 1 and
MS 2, respectively. Summary of the main notation is provided
in Table I.

The transmission power of a station u ∈ {b, m, m1, m2} on
channel k is denoted by Pu,k, where k ∈ {1, ..., K}. In use
cases (i) and (ii), k is omitted from the subscript, since we
consider a single channel.

A. Remaining SI

Single-channel FD. For single-channel FD, we assume that
the remaining SI both at the BS and at an MS can be expressed
as a constant fraction of the transmitted power. In particular,
if the BS transmits at the power level Pb, the remaining SI
is RSIb = gbPb, where gb is a constant determined by the
hardware. Similarly, if an MS transmits at the power level Pm,
its remaining SI is RSIm = gmPm.
Multi-channel FD. We assume that the FD receiver at the BS
has frequency-flat SIC profile, meaning that the remaining SI
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at the BS on channel k is RSIb,k = gbPb,k, where gb is a
constant. We note that such FD receiver design is possible to
implement in devices that do not require small form factor of
the circuit (e.g., a BS or an access point (AP)), and has been
reported in [12].

In the rest of this section, we describe the mathematical
model of the remaining SI for a small form factor device (MS).
We consider a compact/RFIC FD receiver with a circulator at
the antenna interface, described in Section III, and assume a
frequency-flat amplitude and phase response of the canceller,
denoted by |HC,R| and ∠HC,R, respectively. The amplitude
and phase response of the canceller are assumed to be pro-
grammable but constant with frequency.

For the antenna interface’s TX/RX isolation, we assume a
flat amplitude response |HA(f)| = const = |HA| and a con-
stant group delay equal to τ , so that HA(f) = |HA|e−j2πfτ

(recall that the measured amplitude and group delay response
are shown in Fig. 4(b)). For the digital SIC, denoted by SICD,
we assume that the amount of cancellation is constant across
frequency, as delay can be easily generated in the digital
domain. Let fk denote the central frequency of the kth channel,
so that fk = f1 + (k − 1)B/K . Then, the remaining SI after
cancellation can be written as:

RSIm,k

= |Pm,k(HA − HC,R)SIC−1
D |

= Pm,k|(|HA|e−j∠HA(fk) − |HC,R|e−j∠HC,R)|SIC−1
D

= Pm,k|(|HA|2 + |HC,R|2 − 2|HA||HC,R|
· cos(∠HA(fk) + ∠HC,R))|SIC−1

D . (1)

Note that in (1), Pm,k is the MS transmission power on
channel k, Pm,k(HA − HC,R) is the remaining SI after the
RF SIC, and Pm,k(HA − HC,R)SIC−1

D is the remaining SI
after both the RF and digital SIC.

We assume a common oscillator for the TX and RX, with
the phase noise of the oscillator being good enough so that it
does not affect the remaining SI.

The RF canceller’s settings can be programmed in
the field to adjust the frequency at which peak SIC is
achieved [25], [26]. With the amplitude (|HC,R|) and the phase
(∠HC,R) of the RF canceller set to |HA| and −∠HA(fc),
respectively, peak SIC is achieved at frequency fc. Therefore,
the total remaining SI at the MS on channel k can be
written as:

RSIm,k = 2|HA|2Pm,k(1 − cos(2πτ(fk − fc)))SIC−1
D ,

where τ is the group delay from the antenna interface with
a typical value at the order of 1ns (which agrees with the
measured group delay in Fig. 4(b)). Frequency bands used by
commercial wireless systems are at most 10s of MHz wide.
It follows that 2πτ(fk − fc) � 1, and using the standard
approximation cos(x) ≈ 1 − x2/2 for x � 1, we further get:

RSIm,k ≈ |HA|2Pm,k(2πτ)2(fk − fc)2SIC−1
D .

Recalling that fk = f1 + (k − 1)B/K = f0 + kB/K for
f0 = f1 − B/K , and writing fc as fc = f0 + cB/K , for

c ∈ R, we can combine all the constant terms and represent
the remaining SI as:

RSIm,k = gmPm,k(k − c)2, (2)

where gm = |HA|2(2πτ)2(B/K)2SIC−1
D . Note that even

though in this notation we allow c to take negative values,
we will later show that in any solution that maximizes the
sum rate it must be c ∈ (1, K) (Lemma 10).

Fig. 4(d) shows the TX/RX isolation based on Eq. (2)
and based on measurement results. The parameter gm in
Eq. (2) was determined via a least square estimation. The
modeled TX/RX isolation based on Eq. (2) is also compared
to the measured TX/RX isolation of the canceller with the
antenna pair interface in Fig. 4(c). As Fig. 4 shows, our
model of the remaining SI closely matches the remaining
SI that we measured with the RFIC FD receiver presented
in [25] and [26].

B. Sum Rate

The total transmitted power of each station is assumed to
be bounded as follows. In use cases (i) and (ii): Pb ≤ Pb, and
each Pm, Pm1 , Pm2 ≤ Pm. In use case (iii):

∑K
k=1 Pu,k ≤ Pu,

where u ∈ {b, m}, Pu > 0. The channel gain from station u
to station v on channel k is denoted by huv,k in use case (iii)
and by huv in use cases (i) and (ii). The noise level at station
u is assumed to be equal over channels and is denoted by Nu.
We assume that the channel states and noise levels are known.

For the signal transmitted from u to v, where u, v ∈
{b, m, m1, m2}, u �= v, and either u = b or v = b, we let

γuv,k = huv,kPu,k

Nv
denote signal to noise ratio (SNR) at v on

channel k. Similarly as before, in use cases (i) and (ii), index
k is omitted from the notation. In the use case (ii), γm1m2

denotes the (inter-node-)interference to noise ratio (INR). Self-
interference to noise ratio (XINR) at the BS is denoted by
γbb = gbPb

Nb
in use cases (i) and (ii), and by γbb,k = gbPb,k

Nb

in use case (iii). XINR at the MS is denoted by γmm =
gmPm

Nm
and γmm,k = gm(k−c)2Pm,k

Nm
in use cases (i) and (iii),

respectively.
We use Shannon’s capacity formula for spectral efficiency,

and let log(.) denote the base 2 logarithm, ln(.) denote the
natural logarithm. We use the terms “spectral efficiency” and
“rate” interchangeably, as the spectral efficiency on a channel
is the rate on that channel normalized by B/K .

In use case (i), the sum rate on the channel is given as:

r = log
(
1 +

γmb

1 + γbb

)
+ log

(
1 +

γbm

1 + γmm

)
. (3)

Observe that γmb

1+γbb
and γbm

1+γmm
are signal to interference-plus-

noise ratios (SINRs) on the UL and DL, respectively. We will
refer to rm = log

(
1 + γmb

1+γbb

)
as the UL rate and rb =

log
(
1 + γbm

1+γmm

)
as the DL rate.

Similarly as for (i), the sum rate for use case (ii) is:

r = log
(
1 +

γm1b

1 + γbb

)
+ log

(
1 +

γbm2

1 + γm1m2

)
. (4)
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Finally, in use case (iii), the rate on channel k is given as:

rk = log
(
1 +

γmb,k

1 + γbb,k

)
+ log

(
1 +

γbm,k

1 + γmm,k

)
, (5)

while the sum rate (on all channels) is r =
∑K

k=1 rk .
The objective in all problems considered is to maximize r

subject to the upper bound on total transmitted power
and non-negativity constraints. In use cases (i) and (ii),
the variables are Pb and Pm, while in the use case (iii), the
variables are c, Pb,k, and Pm,k, for k ∈ {1, ..., K}.

For the purpose of comparison to TDD systems, we will
sometimes also consider TDD rates. We denote by rmax

TDD,m ≡
log(1+γmax

mb ) and rmax
TDD,b ≡ log(1+γmax

bm ) the maximum UL
and DL TDD rates, respectively, where γmax

mb = γmb(Pm),
γmax

bm = γbm(Pb). The maximum achievable TDD rate can
then be written as rmax

TDD = max{rmax
TDD,m, rmax

TDD,b}.

V. SINGLE CHANNEL FD

A. A Bidirectional FD Link

In this section, we derive general properties of the sum rate
function for use case (i) (Fig. 1(a)).

First, we show that if it is possible for the FD sum rate to
exceed the maximum TDD rate, it is always optimal for the
MS and the BS to transmit at their maximum respective power
levels (Lemma 1). This result is somewhat surprising, because
in general, the FD sum rate function does not have good
structural properties, i.e., it need not be convex or concave
in the transmission power variables.

Building upon this insight, we quantify the FD rate gains
by comparing the FD sum rate to corresponding TDD rates
(Section V-A2). More specifically, we define a metric that
characterizes by how much the FD capacity region extends the
corresponding TDD capacity region, and provide a sufficient
condition on the system parameters for rate gains to hold.

Finally, we establish a sufficient condition for the FD sum
rate function to be biconcave in transmission power levels
(Section V-A3). This condition imposes very mild restrictions
on the XINRs at the BS and the MS. Moreover, the established
condition extends to the multi-channel scenario (use case (iii)),
where it plays a crucial role in deriving an algorithm for the
sum rate maximization that converges to a stationary point
that is a global maximum in practice (Section VI-B1). Without
such a condition, the problem would not have enough structure
to be amenable to efficient optimization methods.

1) Power Allocation:
Lemma 1: If there exists an FD sum rate r that is higher

than the maximum TDD rate, then r is maximized for
Pm = Pm, Pb = Pb.

Proof: From (3), the sum rate can be written as:

r = log
(
1 +

hmbPm

Nb + gbPb

)
+ log

(
1 +

hbmPb

Nm + gmPm

)

Taking partial derivatives of r directly does not provide con-
clusive information about the optimal power levels. Instead,
we write r as an increasing function of another function that

Fig. 5. TDD and FD capacity regions, and FD extension. The capacity
region is plotted for equal maximum SNRs: γmax

mb = γmax
bm ≡ γmax

bm/mb
and

two cases of maximum XINRs: (a) γmax
bb = 1, γmax

mm = 1 and (b) γmax
bb = 1,

γmax
mm = 10.

is easier to analyze. Specifically:

r = log
((

1 +
hmbPm

Nb + gbPb

)
·
(
1 +

hbmPb

Nm + gmPm

))

= log(1 + γ), where

γ =
hmbPm

Nb + gbPb
+

hbmPb

Nm + gmPm

+
hmbPm

Nb + gbPb
· hbmPb

Nm + gmPm
.

Since r is strictly increasing in γ, to maximize r it suffices
to determine Pm, Pb that maximize γ. The first and the second
partial derivative of γ with respect to Pm are:

∂γ

∂Pm
=

hmb

Nb + gbPb
+

hbmPb

(Nm + gmPm)2

×
(

hmbNm

Nb + gbPb
− gm

)

, (6)

∂2γ

∂Pm
2 = −2

hbmPbgm

(Nm + gmPm)3
( hmbNm

Nb + gbPb
− gm

)
. (7)

From (6) and (7):

1) If hmbNm

Nb+gbPb
− gm ≥ 0, then ∂2γ

∂Pm
2 ≤ 0 and ∂γ

∂Pm
> 0,

i.e., γ is concave and strictly increasing in Pm when Pb

is fixed, and therefore maximized for Pm = Pm.
2) If hmbNm

Nb+gbPb
− gm < 0, then ∂2γ

∂Pm
2 > 0, i.e., γ is

strictly convex in Pm when Pb is fixed. Therefore, γ is
maximized at either Pm = 0 or Pm = Pm. Note that if
Pm = 0, there is no signal on UL, in which case FD
rate equals the maximum TDD UL rate.

A similar results follows for Pb by taking the first and the
second partial derivative of γ with respect to Pb.

2) Mapping Gain Over SINR Regions: In this section we
quantify the FD rate gains by comparing the FD capacity
region to the corresponding TDD capacity region. Let rb =
log(1+ γbm

1+γmm
), rm = log(1+ γmb

1+γbb
) denote DL and UL rates,

respectively and let rmax
TDD,b = log(1+γmax

bm ), rmax
TDD,m = log(1+

γmax
mb ) denote the maximum TDD rates. The FD capacity

region is the set of all points (rb, rm) such that Pm ∈ [0, Pm],
Pb ∈ [0, Pb], while the TDD capacity region is the convex hull
of the points (0, 0), (rmax

TDD,b, 0), and (0, rmax
TDD,m). We also let

sb = log(1+ γmax
bm

1+γmax
mm

) and sm = log(1+ γmax
mb

1+γmax
bb

) be the FD DL
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Fig. 6. TDD capacity region extension due to FD as a function of SNRs for
(a) γmax

bb = 1, γmax
mm = 1 and (b) γmax

bb = 1, γmax
mm = 10.

and UL rates when both stations transmit at their maximum
power levels Pb, Pm.

Fig. 5 shows FD and TDD capacity regions for symmetric
maximum SNRs γmax

mb = γmax
bm and two cases of maximum

XINRs: γmax
bb = γmax

mm = 1 and γmax
bb = 1, γmax

mm = 10. Here,
the axes are normalized by rmax

TDD,b and rmax
TDD,m, respectively.

To determine the points at the boundary of the FD capacity
region, we apply Lemma 1 as follows. For rb = αsb, where
α ∈ (0, 1), Lemma 1 implies that the UL rate rm is maximized
for Pm = Pm, regardless of the value of Pb. Therefore, the
DL rate is lowered from sb to rb = αsb by lowering Pb.
The point (rb, rm) at the boundary of the FD capacity region
is then determined by solving rb = αsb for Pb, and setting
rm = rm(Pb, Pm). An analogous procedure is carried out
for rm = αsm, where α ∈ (0, 1). We remark that FD
capacity regions are not necessarily convex (e.g., Fig. 5(b)
for γmax

bm/mb = 0dB and γmax
bm/mb = 10dB).

Lemma 1 states that the maximizer of the FD sum rate
is either (rmax

TDD,b, 0), (0, rmax
TDD,m) or (sb, sm). In particular, to

see whether FD operation increases the sum rate, it suffices
to check whether sb + sm > max{rmax

TDD,b, r
max
TDD,m}. This

motivates us to focus on the pair (sb, sm) when considering by
how much the FD capacity region extends the corresponding
TDD capacity region. We introduce the following definition
(see Fig. 5(b) for a geometric interpretation).

Definition 2: FD extends the corresponding TDD capacity
region by p · 100% if p ≥ 0 is the smallest number for which(

sb

1+p , sm

1+p

)
is inside the TDD capacity region.

The following lemma provides a necessary and sufficient
condition for the capacity region extension of p · 100%.

Lemma 3: FD extends the TDD capacity region
by p · 100%, where p ≥ 0, if and only if:

log
(
1 + γmax

bm

1+γmax
mm

)

log(1 + γmax
bm )

+
log

(
1 + γmax

mb

1+γmax
bb

)

log(1 + γmax
mb )

= 1 + p. (8)

Proof Sketch: The proof is based on the fact that since
p is the smallest number for which the point ( sb

1+p , sm

1+p )
is in the TDD capacity region, ( sb

1+p , sm

1+p ) must lie on the

line connecting rmax
TDD,b and rmax

TDD,m (Fig. 5(b)), and therefore:
sm

1+p = rmax
TDD,m − rmax

TDD,m

rmax
TDD,b

sb

1+p , which is equivalent to (8). �
Fig. 6 shows the TDD capacity region extension due to

FD operation, as a function of the received signals’ SNR, for
BS FD receiver that cancels SI to the noise level and MS
FD receiver that cancels SI to (i) the noise level (Fig. 6(a))
and (ii) one order of magnitude above noise (Fig. 6(b)).

Recall from Definition 2 that the capacity region extension
is computed for Pm = Pm and Pb = Pb, and therefore the
differences in the SNRs are due to signal propagation and not
due to reduced transmission power levels. Fig. 6 suggests that
to achieve non-negligible capacity region extension, SNRs at
the MS and at the BS must be sufficiently high – at least as
high as to bring the resulting SINR to the level above 0dB.

3) Sum Rate Biconcavity: In this section, we establish a
sufficient condition for the sum rate to be (strictly) biconcave
and increasing in Pm and in Pb (Condition 4). We also show
that when the condition does not hold, using FD does not
provide appreciable rate gains, as compared to the maximum
rate achievable by TDD operation. Intuitively, the condition
states that a station’s amount of SIC should be at least as high
as the loss incurred due to wireless propagation on the path
to the intended receiver.

Condition 4: γmm ≤ γmb

1+γbb
and γbb ≤ γbm

1+γmm
.

Proposition 5: If γmm ≤ γmb

1+γbb
, the sum rate r is strictly

concave and strictly increasing in Pm when Pb is fixed.
Similarly, if γbb ≤ γbm

1+γmm
, r is strictly concave and strictly

increasing in Pb when Pm is fixed. Thus, when Condition 4
holds, r is strictly biconcave and strictly increasing in Pm

and in Pb. Furthermore, when Condition 4 does not hold,
r − rmax

TDD < 1b/s/Hz.
Proof: Fix Pb. From the proof of Lemma 1, we can

express r as r = log(1 + γ), where γ is strictly increasing
and concave in Pm whenever

hmbNm

Nb + gbPb
− gm ≥ 0. (9)

Multiplying both sides of (9) by Pm

Nm
and reordering terms:

hmbPm

Nb + gbPb
≥ gmPm

Nm
⇔ γmm ≤ γmb

1 + γbb
.

Whenever (9), or equivalently, the inequality γmm ≤ γmb

1+γbb
,

holds, since γ > 0, ∂γ
∂Pm

> 0, ∂2γ
∂Pm

2 ≤ 0:

∂r

∂Pm
=

1
1 + γ

· ∂γ

∂Pm
> 0, and,

∂2r

∂Pm
2 = − 1

(1 + γ)2
·
( ∂γ

∂Pm

)2

+
1

1 + γ
· ∂2γ

∂Pm
2 < 0,

and therefore r is strictly increasing and strictly concave
in Pm. Similarly, whenever γbb ≤ γbm

1+γmm
, r is strictly

increasing and strictly concave in Pb when Pm is fixed.
Now suppose that Condition 4 does not hold. Then, either

γmm > γmb

1+γbb
or γbb > γbm

1+γmm
. Suppose that γmm > γmb

1+γbb
.

Then:

r = log
(
1 +

γmb

1 + γbb

)
+ log

(
1 +

γbm

1 + γmm

)

< log
(
1 +

γmb

1 + γbb

)
+ log

(
1 +

γbm

1 + γmb

1+γbb

)

= log
(
2 ·

(
1 +

1
2

(
γbm +

γmb

1 + γbb
− 1

)))

= 1b/s/Hz + log
(
1 +

1
2

(
γbm +

γmb

1 + γbb
− 1

))
.
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Fig. 7. TDD capacity region extension due to FD as a function of SNRs, where SNRs change due to path loss with exponent η, and distance between
MS 1 and MS 2 is dm1m2 = ρ(dm1b +dbm2 ). Transmission power levels are set to maximum. In SNR regions where the triangle inequality of the distances
is not satisfied, p is set to 0.

Since 1
2

(
γbm + γmb

1+γbb
− 1

)
< max{γmb, γbm}, it follows that

r < 1b/s/Hz + rmax
TDD , which completes the proof for γmm >

γmb

1+γbb
. The proof for the case γbb > γbm

1+γmm
follows the same

line of argument and is omitted for brevity.

B. Two Unidirectional Links

Much of the analysis for use case (i) (Section V-A) extends
to use case (ii) (Fig. 1(b)), due to the similarity between the
sum rate as a function of transmission power levels for these
two use cases (see Eqs. (3) and (4)). However, there are also
important differences. First, the interfering signal at MS 2 in
use case (ii), unlike the self-interfering signal at the MS in
the bidirectional link case, is not known at the receiver, and
therefore, cannot be cancelled (unless an additional channel
is used, which we do not consider). Second, in use case (ii),
the channel gains between MSs cannot take arbitrary values.
This is because the channel gains typically conform to a
path loss model of propagation, where the SNR depends on
distances between MSs, which in turn need to satisfy the
triangle inequality. The following two Lemmas are similar to
Lemmas 1 and 3. We state them without proofs.

Lemma 6: If there exists an FD sum rate that is higher than
the maximum TDD rate, then the FD sum rate is maximized
at Pm1 = Pm for MS 1, and Pb = Pb for the BS.

Lemma 7: FD extends the TDD capacity region by
p · 100% if and only if:

log
(
1 +

γmax
bm2

1+γmax
m1m2

)

log(1 + γmax
bm2

)
+

log
(
1 +

γmax
m1b

1+γmax
bb

)

log(1 + γmax
m1b )

= 1 + p. (10)

In a path loss model of propagation, the wireless channel
gain between two stations is a function of the distance between

the stations: huv =
(

L
duv

)η

, where u, v ∈ {b, m1, m2}, u �= v,
η is the path loss exponent, and L is a constant. Therefore, as
distances dm1b, dbm2 , and dm1m2 need to satisfy the triangle
inequality, SNRs γm1b, γbm2 and INR γm1m2 cannot take
arbitrary values. To evaluate rate gains in use case (ii), we
consider path loss exponents η ∈ {2, 3, 4}, since typical range
for the path loss exponent is between 2 and 4 [31]. We assume
fixed maximum power levels at the BS and the MS 1, equal
noise levels N at the BS and the MS 2, and we vary SNRs
and the INR as the function of distance, as follows:

γm1b =
hm1bPm1

N
=

hm1b

hmax
m1b

· γmax
m1b =

(dm1b

dmin
m1b

)η

γmax
m1b ,

γm1m2 =
hm1m2Pm1

N
=

hm2m2

hmax
m1m2

· γmax
m1m2

=
(dm1m2

dmin
m1m2

)η

γmax
m1m2

,

γbm2 =
hbm2Pb

N
=

hbm2

hmax
bm2

· γmax
bm2

=
(dbm2

dmin
bm2

)η

γmax
bm2

,

where dmin
uv is a reference distance at which γuv = γmax

uv for
u, v ∈ {b, m1, m2}, x �= y.

For the purpose of comparison, we will assume that dmin
bm2

=
dmin

m1b = dmin
m1m2

≡ dmin, which would correspond to Pb = Pm,
and normalize all distances to dmin.

Capacity region extension as a function of SNRs is
shown in Fig. 7, for different values of the path loss
exponent and dm1m2 = ρ(dm1b + dbm2), for ρ ∈
{0.25, 0.5, 0.75, 1}. For all combinations of SNRs at which the
triangle inequality is not satisfied, we set the capacity region
extension p to 0.
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Fig. 7 suggests that to achieve over 50% capacity region
extension, the environment needs to be sufficiently lossy, i.e.,
with the path loss exponent η > 2. Moreover, to achieve high
capacity region extension, the SNRs at the BS and at the
MS 2 need to be low enough, meaning that the corresponding
distances dm1b and dbm2 need to be large, since the differences
in the SNR shown in all the graphs are due to different
distances (and consequently different path loss).

VI. OFDM BIDIRECTIONAL LINKS

In this section, we focus on the rate maximization for use
case (iii) (Fig. 1(c)). Recall that in this use case the FD receiver
at the MS has a frequency-selective SIC profile (Fig. 4(d)).
Requiring two technical conditions (Conditions 9 and 12),
we derive an algorithm (Algorithm 1, MAXIMUMRATE) for
the sum rate maximization. The algorithm is guaranteed to
converge to a stationary point, which in practice is typically
a global maximum. While the derived algorithm runs in
polynomial time, its running time is high because it requires
invoking a large number of biconvex programming methods.
We therefore consider a high SINR approximation of the sum
rate, and develop an efficient power allocation algorithm for
the sum rate maximization. We also prove that in the high
SINR regime it is always optimal to set the maximum SIC
frequency in the middle of the used frequency band.

A. Analysis of Sum Rate
1) Dependence on Channel Power Levels: The analysis of

the sum rate in terms of transmission power levels extends
from the single-channel case (Section V-A). In particular:

Observation 8: If
gm(k − c)2

Nm
≤ hmb,k

Nb + gbPb,k
and

gb

Nb
≤ hbm,k

Nm + gmPm,k(k − c)2
(11)

hold, then the sum rate is biconcave in Pm,k and Pb,k.
This result is simple to show, since (k − c)2 term is inde-

pendent of the transmission power levels, and Pb,k and Pm,k

only appear in one summation term (rk). Therefore, we get
the same form of partial derivatives in Pb,k and Pm,k as in the
case of a single channel (proof of Lemma 1). Similar to the
case of a single channel, if condition (11) is not satisfied, then
the achievable rate improvement is low.

The first inequality in (11) guarantees concavity in Pm,k

when Pb,k is fixed, while the second one guarantees concavity
in Pb,k when Pm,k is fixed. The condition (11) cannot be
satisfied for any Pb,k ≥ 0, Pm,k ≥ 0 (e.g., the first inequality
cannot be satisfied if gm(k−c)2

Nm
>

hmb,k

Nb
). However, since the

role of condition (11) is to guarantee biconcavity in the power
levels, we can replace this condition by either Pm,k = 0
or Pb,k = 0, which implies rate concavity in Pm,k, Pb,k.
Specifically, to guarantee that the sum rate is biconcave in
all Pm,k, Pb,k, we require the following condition:

Condition 9: (a) gm(k−c)2

Nm
≤ hmb,k

Nb+gbPb,k
if gm(k−c)2

Nm
<

hmb,k

Nb
, otherwise Pm,k = 0, and (b) gb

Nb
≤ hbm,k

Nm+gmPm,k(k−c)2

if gb

Nb
<

hbm,k

Nm
; otherwise Pb,k = 0 if Pm,k was not set

to 0 by (a).

Algorithm 1 MAXIMUMRATE(ε)

Input: K, Pb, Pm, gb, gm, Nm, Nb

1: c1 = 1, c2 = K , Δc = ε
2

ln 2 (ln(K)+1+2
√

3)

2: cmax = rmax = 0, {Pmax
b,k } = {Pmax

m,k } = {0}
3: for c = c1, c < c2, c = c + Δc do
4: Solve via biconvex programming:

max r =
∑K

k=1 rk , where rk is given by (5)
s.t. Conditions 9 and 12 hold∑K

k=1 Pm,k ≤ Pm,
∑K

k=1 Pb,k ≤ Pb

Pb,k ≥ 0, Pm,k ≥ 0 , ∀k ∈ {1, ..., K}.
5: if r > rmax then
6: rmax = r, cmax = c,
7: {Pmax

b,k } = {Pb,k}, {Pmax
m,k } = {Pm,k}

8: return cmax, {Pmax
b,k }, {Pmax

m,k }, rmax.

Note that Condition 9 forces a channel k to be used in half-
duplex (only one of Pm,k, Pb,k is non-zero) whenever it is not
possible to satisfy the sufficient condition (11) for the sum rate
biconcavity in Pm,k, Pb,k for any Pm,k ≥ 0 and Pb,k ≥ 0.

2) Dependence on Maximum SIC Frequency: The following
lemma shows that choosing optimal c for a given power
allocation {Pb,k, Pm,k} is hard in general, since the sum
rate r as a function of c is neither convex nor concave, and
can have Ω(K) local maxima. Proof is provided in Appendix.

Lemma 10: The sum rate r is neither convex nor concave
in c. All (local) maxima of r(c) lie in the interval (1, K).
In general, the number of local maxima is Ω(K).

Even though r(c) can have multiple maxima in c, if we
restrict the analysis to the values of γmb,k and γmm,k that are
relevant in practice, the selection of c, together with the power
allocation, are tractable if the following inequalities hold:

gm

Nm
≤ hmb,k

Nb + gbPb,k
, ∀k ∈ {1, ..., K}. (12)

Note that these inequalities are implied by Condition 9 for
|k − c| ≥ 1, and that there can be at most 2 channels with
|k − c| < 1. For |k − c| < 1, the corresponding inequality
limits SI on channel k. The following lemma bounds the first
partial derivative of r with respect to c. This bound will prove
useful in maximizing r as a function of c and {Pb,k, Pm,k}
(Section VI-B1).

Lemma 11: If inequalities (12) hold, then:
∣
∣
∣
∣
∂r

∂c

∣
∣
∣
∣ ≤

2
ln 2

(ln(K) + 1 + 2
√

3) ∀c ∈ (1, K).

Similarly as for Condition 9, since (12) cannot be satisfied
for Pb ≥ 0 when gm

Nm
>

hmb,k

Nb
, we require the following:

Condition 12: ∀k ∈ {1, ..., K}: gm

Nm
≤ hmb,k

Nb+gbPb,k
if gm

Nm
<

hmb,k

Nb
, and Pm,k = 0 otherwise.

Proof of Lemma 11 can be found in [27].

B. Parameter Selection Algorithms

1) General SINR Regime: The pseudocode of the algorithm
for maximizing the sum rate in the general SINR regime is
provided in Algorithm 1 – MAXIMUMRATE. We claim the
following:
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Lemma 13: Under Conditions 9 and 12, the sum rate
maximization problem is biconvex. If biconvex programming
subroutine in MAXIMUMRATE finds a global optimum for
{Pb,k, Pm,k}, then MAXIMUMRATE determines c and the
power allocation {Pb,k, Pm,k} that maximize sum rate up to
an absolute error ε, for any ε > 0.

Note that without Condition 9, the biconvex program-
ming subroutine in MAXIMUMRATE would not be guaranteed
to converge to a stationary point (see [32]). Moreover,
since the sum rate is highly nonlinear in the parameter c
(Lemma 10), c cannot be used as a variable in the biconvex
programming routine (or a convex programming method).
Nevertheless, as a result of Lemma 11 that bounds the first
derivative of r with respect to c when condition 12 is applied,
we can restrict our attention to c’s from a discrete subset of
the interval (1, K).

Proof of Lemma 13: Consider the optimization problem in
Step 4 of the algorithm. Since Condition 9 is required by the
constraints, the objective r is concave in Pb,k whenever Pm,k’s
are fixed, and, similarly, concave in Pm,k whenever Pb,k’s are
fixed. Therefore, r is biconcave in Pb,k, Pm,k. The feasible
region of the problem from Step 4 is determined by linear
inequalities and Conditions 9 and 12.

Condition 9 is either an inequality or an equality for
each Pm,k, Pb,k that (possibly rearranging the terms) is linear
in Pm,k, Pb,k. Condition 12 is a linear inequality in Pm,k.
Therefore, the feasible region in the problem of Step 4 is a
polyhedron and therefore convex. It follows immediately that
this problem is biconvex.

Suppose that the biconvex programming method from
Step 4 of MAXIMUMRATE finds a global optimum. Then the
algorithm finds an optimal power allocation for each c from

the set of (K−1)( 2
ln 2 (ln(K)+1+2

√
3))

ε − 2 equally spaced points
from the interval (1, K), and chooses c and power allocation
that provide maximum sum rate r.

What remains to prove is that by choosing any alternative
c �= cmax and accompanying optimal power allocation the sum
rate cannot be improved by more than an additive ε.

Recall from Lemma 10 that optimal c must lie in
(1, K). Suppose that there exist c∗, {P ∗

b,k, P ∗
m,k} such that

c∗ ∈ (1, K), c∗ �= cmax and r(c∗, {P ∗
b,k, P ∗

m,k}) > rmax + ε.
From the choice of points c in the algorithm, there must

exist at least one point ca that the algorithm considers such
that |ca − c∗| < Δc = ε

2
ln 2 (ln(K)+1+2

√
3)

. From Lemma 11,

r(c∗, {P ∗
b,k, P ∗

m,k}) − r(ca, {P ∗
b,k, P ∗

m,k})
<

ε
2

ln 2 (ln(K) + 1 + 2
√

3)
·
( 2

ln 2
(ln(K) + 1 + 2

√
3)

)
= ε,

since in any finite interval I any continuous and differentiable
function f(x) cannot change by more than the length of the
interval I times the maximum value of its first derivative f ′(x)
(a simple corollary of the Mean-Value Theorem).

Since the algorithm finds an optimal power alloca-
tion for each c, we have that r(ca, {P ∗

b,k, P ∗
m,k}) ≤

r(ca, {P a
b,k, P a

m,k}) ≤ rmax. Therefore: r(c∗, {P ∗
b,k, P ∗

m,k}) −
rmax < ε, which is a contradiction. �

2) High SINR Regime: A high SINR approximation of the
sum rate is:

r ≈
K∑

k=1

(
log

( γmb,k

1 + γbb,k

)
+ log

( γbm,k

1 + γmm,k

))
. (13)

While in the high SINR regime the dependence of sum rate
on each power level Pb,k, Pm,k for k ∈ {1, ..., K} becomes
concave (regardless of whether Condition 9 holds or not), the
dependence on the parameter c remains neither convex nor
concave as long as we consider a general power allocation.
Therefore, we cannot derive a closed form expression for c
in terms of an arbitrary power allocation. However, as we
show in Lemma 16, when power allocation and the choice
of parameter c are considered jointly, it is always optimal
to place c in the middle of the interval (1, K): c = K+1

2 .
The following proposition and lemma characterize the optimal
power allocation for a given c.

Proposition 14: Under high-SINR approximation and any
power allocation {Pm,k} at the MS and any choice of c, it is

always optimal to allocate BS power levels as Pb,k = Pb
K .

Proof: Let Pb denote the total irradiated power by the BS.
Write power levels on individual subchannels as Pb,k = βkPb,
where βk ≥ 0, ∀k ∈ {1, ..., K}, and

∑K
k=1 βk = 1. Then the

sum rate can be written as:

r =
K∑

k=1

(
log

( hmb,kPm,k

Nb + gbβkPb

)

+ log
( hbm,kβkPb

Nm + gm(k − c)2Pm,k

))
.

First, observe that

∂r

∂Pb
=

K∑

k=1

1{βk>0}

(
1
Pb

− gbβk

Nb + gbβkPb

)

=
K∑

k=1

1{βk>0}
(
Pb

−1 − (Nb/(gbβk) + Pb)−1
)
,

where 1{.} is an indicator function. Since βk ≥ 0 ∀k ∈
{1, ..., K} and

∑K
k=1 βk = 1, it follows that there exists at

least one strictly positive βk. For each such βk, 1βk>0

(
1

Pb
−

1
Nb

gbβk
+Pb

)
> 0, since Pb < Nb

gbβk
+ Pb. Therefore, ∂r

∂Pb
> 0,

which implies that it is optimal to choose Pb = Pb.
Taking the first and the second partial derivative of r with

respect to each βk, it is simple to show that r has the same
dependence on each βk, and, moreover, is strictly concave
in each βk, as ∂2r

∂βk
2 = − 1

βk
2 + 1�

Nb
gbPb

+βk

�2 < 0, where

the inequality follows from βk < Nb

gbPb
+ βk. Therefore,

r is maximized for βk = 1
K .

Lemma 15: Under high-SINR approximation and for a
given, fixed, c the optimal power allocation at the MS satisfies
Pm,k = αk · Pm, where αk ≥ 0,

∑
αk = 1, and for k �= K:

(i) αk =
(

1
αK

− 1
Nm/RK+αK

)−1

if k = c,

(ii) αk = −Nm+
√

Nm
2+4αK(Nm+RKαK)Rk

2Rk
if k �= c,

where Rk = gm(k − c)2Pm for k ∈ {1, ..., K}.
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Proof: Let Pm,k = αk · Pm, where αk > 0, ∀k, and
∑K

k=1 αk = 1. The sum rate can then be written as:

r =
K∑

k=1

(
log

( hmb,kαkPm

Nb + gbPb,k

)

+ log
( hbm,kPb,k

Nm + gm(k − c)2αkPm

))
.

Proving that at the optimal solution that maximizes r we
necessarily have Pm = Pm is analogous to the proof given
in Proposition 14 for Pb = Pb, and it is therefore omitted.

As
∑K

k=1 αk = 1, only K − 1 αk’s can be chosen
independently, while the value of the remaining one is implied
by their sum being equal to 1. Choose αK = 1 − ∑K−1

k=1 αk,
and observe that that K − c �= 0 (and therefore RK �= 0) is
always true since, similar as in the proof of Lemma 10, at the
optimum it must be c ∈ (1, K).

If Rk = gm(k − c)2Pm = 0, then the first and the second
derivative of r with respect to αk are given as:

∂r

∂αk
=

1
αk

+
1

αK

∂αK

∂αk
− RK

Nm + RKαK

∂αK

∂αk

=
1
αk

− 1
αK

+
RK

Nm + RKαK
,

∂2r

∂αk
2

= − 1
α2

k

−
(

1
α2

K

− RK
2

(Nm + RKαK)2

)

= − 1
α2

k

−
(

1
α2

K

− 1
(Nm/RK + αK)2

)

< 0.

It follows that r is concave in αk and maximized for

αk =
(
αK

−1 − (Nm/RK + αK)−1
)−1

, (14)

where RK = gm(K − c)2Pm.
If Rk �= 0, then the first and the second derivative are:

∂r

∂αk
=

1
αk

− Rk

Ni + Rkαk
− 1

αK
+

RK

Nm + RKαK
,

∂2r

∂αk
2

= − 1
α2

k

+
Rk

2

(Nm + Rkαk)2
− 1

α2
K

+
RK

2

(Nm + RKαK)2

= −
(
α−2

k − (Nm/Rk + αk)−2
)

−
(
α−2

K − (Nm/Rk + αK)−2
)

< 0.

It follows that r is concave in αk and maximized for:

∂r

∂αk
=

1
αk

− Rk

Ni + Rkαk
− 1

αK
+

RK

Nm + RKαK
= 0.

(15)

After simplifying (15), we get:

αk(Nm + Rkαk) = αK(Nm + RKαK). (16)

Solving the quadratic equation (16) for αk and using that
αk > 0, it follows that r is maximized when αk satisfies

αk =
−Nm +

√
Nm

2 + 4αK(Nm + RKαK)Rk

2Rk
, (17)

where Rk = gm(k − c)2Pm.
It is relatively simple to show (using similar approach as in

the proof of Lemma 10) that under general power allocation r

can have up to K local maxima with respect to c. However,
if c is considered with respect to the optimal power allocation
corresponding to c (Proposition 14 and Lemma 15), it is
always optimal to place c in the middle of the interval (1, K),
as the following lemma states.

Lemma 16: If (c, {Pb,k, Pm,k}) maximizes the sum rate
under high SINR approximation, then c = K+1

2 .
Even though this result may seem intuitive because the

optimal power allocation is always symmetric around c
(Proposition 14 and Lemma 15), the proof does not fol-
low directly from this property and requires many techni-
cal details. For this reason, the proof is deferred to the
technical report [27]. A simple corollary of Lemma 16
is that:

Corollary 17: If (c∗, {Pmax
m,k , Pmax

b,k }) maximizes r under
high SINR approximation, then the power allocation {Pmax

m,k }
is symmetric around K+1

2 and decreasing in |k − c|.
Lemma 18: A solution (cmax, {Pmax

m,k , Pmax
b,k }) that maxi-

mizes r under high SINR approximation up to an absolute
error ε can be computed in O

(
K log

(
1
ε

))
time.

Proof: From Proposition 14, at the optimum Pmax
b,k =

Pb,max
K , ∀k ∈ {1, ..., K}. This can be computed in constant

time, and requires Θ(K) time to assign the values to all the
Pb,k’s. From Lemma 16, cmax = K+1

2 .
From Lemma 15, Pmax

m,k = αkPm, where {αk} are positive

coefficients given by (14), (17) and
∑K

k=1 αk = 1. Recall
that all the αk’s are given in terms of αK , so we can
find the allocation {αk} by performing a binary search for
αK until

∑K
k=1 αk ∈ [1 − ε′, 1]. Corollary 17 implies that

αK ≤ 1
K , so it is sufficient to perform the binary

search for αK ∈ [
0, 1

K

]
. Such a binary search requires

O
(
log

(
1

Kε′
))

iterations, with each iteration requiring O(K)
time to compute {αk} and evaluate

∑K
k=1 αk, for the total

time O
(
K log

(
1

Kε′
))

.
The last part of the proof is to determine an appropriate

ε′ so that r(cmax, {Pmax
m,k , Pmax

b,k }) ≥ max r − ε, where the
maximum is taken over all feasible points (c, {Pm,k, Pb,k}).
Notice that we are only deviating from the optimal solution in
that

∑K
k=1 Pmax

m,k = Pm ·∑K
k=1 αk ∈ [Pm(1− ε′), Pm] instead

of
∑K

k=1 Pmax
m,k = Pm. Therefore, (cmax, {Pmax

m,k , Pmax
b,k }) is

the optimal solution to the problem that is equivalent to the
original problem, with maximum total power at the MS equal
to Pm · ∑K

k=1 αk. Observe that:

∂r

∂Pm
=

K∑

k=1

( 1
Pm

− 1
Nm

gm(k−c)2 + Pi

· 1{k �=c}
)
≤ K

Pm
.

As ∂r
∂Pm

(Pm) ≤ K

Pm(1−ε′)
for Pm ∈ [Pm(1 − ε′), Pm], it

follows that: max r − r(cmax, {Pmax
m,k , Pmax

b,k }) ≤ K

Pm(1−ε′)
·

Pmε′. Setting: K

Pm(1−ε′)
· Pmε′ = ε ⇔ ε′ = ε

K+ε ,

we yield the total running time of: O
(
K log

(
K+ε
Kε

))
=

O
(
K log

(
1
ε

))
.

We summarize the results from this section in Algorithm 2 –
HSINR-MAXIMUMRATE.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 8. Power allocation over K = 33 channels (20MHz bandwidth) at the BS and MS for different values of average SNR (γavg). The higher the γavg , the
more channels are used in full-duplex, and the closer the power allocation gets to the high SINR approximation one (computed by HSINR-MAXIMUMRATE).
(a) BS, γavg = 0dB. (b) BS, γavg = 10dB. (c) BS, γavg = 20dB. (d) BS, γavg ∈ {30, 40, 50}dB. (e) MS, γavg = 0dB. (f) MS, γavg = 10dB. (g) MS,
γavg = 20dB. (h) MS, γavg ∈ {30, 40, 50}dB.

Algorithm 2 HSINR-MAXIMUMRATE(ε)

Input: K, Pb, Pm, gb, gm, Nm, Nb

1: cmax = (K + 1)/2
2: {Pmax

b,k } = Pb/K , ∀k ∈ {1, ..., K}
3: for αK ∈ [0, 1/K], via a binary search do
4: Compute αk for 1 ≤ k ≤ K − 1 using (14) and (17)
5: End binary search when

∑K
k=1 αk ∈ [1 − ε/(K + ε), 1]

6: return cmax, {Pmax
b,k }, {Pmax

m,k }.

VII. MEASUREMENT-BASED NUMERICAL EVALUATION

This section presents numerical evaluations for use
case (iii). Numerical evaluations for use cases (i) and (ii)
were already provided in Sections V-A and V-B, respectively.
We focus on the impact of a frequency-selective SIC profile
in a small form factor hardware at the MS (Fig. 4(d)), and
evaluate achievable rate gains from FD.
Evaluation Setup. To determine the position cmax of
maximum SIC and the power allocation {Pmax

m,k , Pmax
b,k }

that maximize the sum rate, we run an implementation
of the MAXIMUMRATE algorithm separately for measured
([25], [26] and Fig. 4(d)) and modeled (Eq. (2)) SIC pro-
files of the MS FD receiver. Additionally, we determine
cmax, {Pmax

m,k , Pmax
b,k } for the high SINR approximation of

the sum rate using the HSINR-MAXIMUMRATE algorithm.
We also compare the results to the case when the total
transmission power is allocated equally among the frequency
channels (we refer to this case as equal power allocation).

Since the measurements were performed only for the analog
part of the FD receiver, we assume additional 50dB of can-
cellation from the digital domain.3 Similar to [12], we assume
that when either station transmits at maximum total power
that is equally allocated across channels (so that Pm,k =

3Fig. 4(d) only shows isolation from the SIC in the analog domain.

Pm/K, Pb,k = Pb/K), the noise on each channel is 110dB
below the transmitted power level.

We consider a total bandwidth of: (i) 20MHz in the range
2.13–2.15GHz, (ii) 10MHz in the range 2.135–2.145GHz,
and (iii) 5MHz in the range 2.1375–2.1425GHz. We adopt
the distance between the measurement points as the OFDM
channel width (≈ 600kHz), so that there are K = 33, K = 17,
and K = 9 channels, respectively, in the considered bands. For
the SIC at the BS, we take gbPb/K = Nb [12].

We scale all the power variables so that Pm = Pb = 1.
We consider flat frequency fading (so that hmb,k and hbm,k

are constant across channels k), and perform numerical evalu-
ations for hmb,kPm/Nb = hbm,kPb/Nm ≡ γavg ·K , ∀k, where
γavg ∈ {0, 10, 20, 30, 40, 50} [dB].

We run MAXIMUMRATE for Δc = 0.01, which corresponds
to an absolute error of up to ε ≈ 0.2 for r. We evaluate the sum
rate and the capacity region extension using the measurement
data for the remaining SI and cmax, {Pmax

m,k , Pmax
b,k } returned

by the algorithm. We assume that the amount of SIC around
fc does not change as fc (and correspondingly c) is varied.
To run the algorithm for c positioned at any point between two
neighboring channels, we interpolate the measurement data.
Results. Due to space constraints, we provide detailed results
for the power allocation only for the 20MHz bandwidth
(K = 33) case, in Fig. 8. For the 10MHz (K = 17) and
5MHz (K = 9) cases, we only provide the results for the
capacity region extension, in Fig. 9.

Fig. 8 shows the power allocations at the BS (Fig. 8(a)–(d))
and at the MS (Fig. 8(e)–(h)) computed by MAXIMUMRATE

for both measured and modeled SI and for different values
of average SNR γavg. Additionally, Figs. 8(d) and 8(h) com-
pare the power allocation computed by MAXIMUMRATE to
the one computed by HSINR-MAXIMUMRATE. As Fig. 8
suggests, when γavg is too low, most channels are used as
half-duplex – i.e., only one of the stations transmits on a chan-
nel. As γavg increases, the number of channels used as full-
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Fig. 9. Evaluated (a) sum rate for K = 33, normalized to the number of channels K , and (b)–(d) capacity region extension for (b) K = 33, (c) K = 17,
and (d) K = 9. The graphs suggest that higher average SNR (γavg) and better cancellation (lower bandwidth – fewer frequency channels K) lead to higher
rate gains.

Fig. 10. Evaluated (a) sum rate for K = 33, normalized to K , and (b) capac-
ity region extension for K ∈ {9, 17, 33}, for the sum of the total transmission
power levels at the MS and at the BS scaled so that it is the same as in the
TDD case.

duplex increases: at γavg = 10dB about seven channels are
used as full-duplex, while for γavg = 20dB all but two chan-
nels are used as full-duplex, and when γavg ≥ 30dB, we reach
the high SINR approximation for the FD power allocation.

Fig. 9 shows (a) sum rate normalized to the number of
channels for K = 33 (20MHz bandwidth) and (b)–(d) capacity
region extension for K = 33 (20MHz bandwidth), K = 17
(10MHz bandwidth), and K = 9 (5MHz bandwidth). As Fig. 9
suggests, the FD rate gains increase as γavg increases and the
SIC becomes better across the channels (i.e., as we consider
lower bandwidth – lower K).

We observe in Fig. 9(b)–(d) that there is a “jump” in the
capacity region extension as γavg increases from 0dB to 5dB.
This happens because at γavg = 0dB Conditions 9 and 12
force all the power levels at the MS to zero, and we have the
HD case where only the BS is transmitting. At γavg = 5dB
Conditions 9 and 12 become less restrictive and some of
the channels are used as FD. At the same time, the total
irradiated power (considering both MS and BS) is doubled
compared to the case when γavg = 0dB (and to the TDD
operation), so a large portion of the rate improvement comes
from this increase in the total irradiated power. To isolate the
rate gains caused by FD operation from those caused by the
increase in the total irradiated power, we normalize the total
irradiated power so that it is the same as in the TDD regime
and compute the sum rate for K = 33 and the capacity
region extension for K = {33, 17, 9}, as shown in Fig. 10.
The results suggest that the rate gains that are solely due to
FD operation increase smoothly with γavg and the rate gains
are almost indistinguishable for different power allocation
policies (MAXIMUMRATE for measured and modeled SI,
HSINR-MAXIMUMRATE, and equal power allocation).

Since for the transmitted power of 1/K and c placed in
the middle of the frequency band XINR at the first and
the last channel is about 35 (≈ 15dB) for K = 33, about
8.5 (≈ 9dB) for K = 17, and about 2.5 (≈ 4dB) for K = 9,
our numerical results suggest, as expected (see e.g., Figs. 5
and Fig. 6), that to achieve high rate gains, γavg needs to be
sufficiently high. This is demonstrated by the results shown
in Fig. 9 and 10. In particular, the rate gains obtained solely
from FD operation are non-negligible when on most channels
XINR ≥ 0dB. Moreover, simple power allocation policies,
such as equal power allocation and high SINR approximation
power allocation are near-optimal when the rate gains are non-
negligible, as demonstrated by Fig. 10.

VIII. CONCLUSION AND FUTURE WORK

In this paper we considered three basic use cases of FD,
including single- and multi-channel scenarios. In order to
analyze the multi-channel scenario, we developed a new model
that is grounded in realistic FD receiver implementations for
small form factor devices. We characterized the rate gains in
different scenarios and solved power allocation and frequency
selection problems either analytically or algorithmically. Our
numerical results demonstrate the gains from FD in scenarios
and for receiver models that have not been studied before.

This is one of the first steps towards understanding the
benefits and the complexities associated with FD. Hence,
there are still many open problems to consider. In particular,
generalizing our results to the MIMO settings is of high
relevance and interest. Additionally, SIC that has different
impacts on different channels calls for the design of algorithms
for OFDM networks with multiple access and MSs modeled
as small form-factor devices. Moreover, we plan to develop
scheduling algorithms that support the co-existence of half-
and full-duplex users. While significant attention has been
given to scheduling and resource allocation in half duplex
OFDM networks (see [33] and references therein), as demon-
strated in this paper, the special characteristics of FD pose new
challenges that have not been addressed.
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